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An overview of the VLSI design
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required for a system designer to develop
complex System on Chip (SoC).

—Veena S. Chakravarthi
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Foreword to the First Edition by Faraj Aalaei

It’s an excellent time to be working in the semiconductor industry. Qualitatively, we
are all familiar with Generation Z’s constant appetite for digital consumption. That
appetite is driving technical innovation starting in huge data centers and moving out
to the growing sea of smartphones. Quantitatively, Gartner tells us that our industry
is growing at a rate of 26% year over year. The semiconductor industry has never
been more complex and it’s going to keep getting more complicated. Every device
needs to be smaller, more powerful, and more energy efficient than the previous
generation.

There is no doubt our industry is shifting as waves of consolidation and innova-
tion crash into new geographies and new markets, but the demand for intelligent,
highly-integrated chip design keeps growing. This means that any aspiring hard-
ware engineer — whether they want to work for a hungry, young startup or an estab-
lished house of silicon — needs to become fully versed in the art of Very Large-Scale
Integration (VLSI). There is no better teacher to learn from than Dr. Veena
Chakravarthi.

I first met Veena in 2000 when she joined Centillium to play a key role in devel-
oping the high-performance System on Chip (SoC) solutions for Ethernet Passive
Optical Networks (EPON). Those products helped us enable Asian service provid-
ers to deliver some of the first fiber to the home deployments in the world and threw
fuel on the fire of data consumption. I've followed her career ever since, as she
continues to add technical, professional and academic accolades to a stellar resume.

With thirty years of experience as a SoC architect and VLSI designer, Veena has
distinguished herself as both an artist and an engineer. Her abilities to design large,
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X Foreword to the First Edition by Faraj Aalaei

complex electronics systems in silicon have created baseline, enabling technologies
for a number of communications systems. Veena’s depth of experience has allowed
her to create a perfect primer for any engineer wanting to arm themselves with the
necessary mindset to understand the chip design process and development cycle for
SoCs. This practical approach contains straightforward applications of known tech-
niques to create a structure which will help freshman engineers contribute effec-
tively to the SoC design and development process.

I’'m excited about the future of our industry and where SoC’s can take us. They
are at the heart of the advancements in medical, bio-tech, transportation, telecom-
munication and countless other industries that will change how we live. This book
is a thoughtful guide for any aspiring chip designer, and I thank Veena for teaching
the next generation of innovators, inventors and dreamers.

Faraj Aalaei is an Iranian- American immigrant, entrepreneur and 35-year veteran
of the communications industry. He is the Founding Managing Partner of Candou
Ventures. He was the CEO and Chairman of Aquantia Corp., a leader in the design,
development, and marketing of advanced, high-speed communications ICs for
Ethernet connectivity in the Data Center, Enterprise Infrastructure, Access, and
Automotive markets. Prior to joining Aquantia, Faraj served as Chief Executive
Officer and was one of the founders of Centillium Communications, a sesmiconduc-
tor solutions company. Before co-founding Centillium, he held a variety of posi-
tions with Fujitsu Network Communications and AT&T Bell Laboratories. Faraj has
a Doctor of Engineering and a B.S. in Electrical Engineering Technology from
Wentworth Institute of Technology, an M.S. in Electrical Engineering from the
University of Massachusetts, and an M.B.A. from the University of New Hampshire.
He holds three U.S. patents. An entrepreneur at heart, Faraj is a founding member
and general partner at Monjeri Investment and Candou Ventures where he has
investments in multiple start-ups in the communications, semiconductor, biotech,
software, and e-commerce industries. As philanthropists, Faraj and his wife Susan
Akbarpour are working to lessen inequality and to improve education inefficiencies
around the world, serving as board members and supporters for multiple non-profit
organizations. They are passionate about equality and well-being for children every-
where. Mr. Aalaei co-founded the Iranian American Political Action Committee
(IAPAC) and serves on the board of Iranian American Contribution project (IACP)
and Iranian Scholarship Foundation (ISF).

Founding General Partner, Candou Ventures Faraj Aalaei
Palo Alto, CA, USA



Foreword to the First Edition by Ashok Soota

The semiconductor industry is undergoing a massive change with technologies like
10T, intelligent edge/cloud, mobility, automotive, 5G, Al and ML, creating in major
opportunities. The expectations of 50 billion connected devices by 2025, and the
massive amounts of data that will need to be processed on edge analytics as well as
in the cloud, will result in sharper insights for better decision making.

With customers expecting continual improvements in applications, the question
is whether the chip industry is moving fast enough to meet these expectations? A
broad supply chain, equipment and materials innovations, and attracting the “best of
the best” college graduates to fuel innovation are key.

This is an excellent time for young engineers to make the most of the opportuni-
ties and thereby fulfil their career aspirations, be it in corporate or Entrepreneurship.
The book Practical Approach to VLSI SoC Design by Prof. Veena Chakravarthi is a
good reference guide for new engineers and also a good refresher for seasoned prac-
titioners of VLSI.

I have known Veena since early 2000, when she joined the core team of the tech-
nology business at Mindtree when she played a crucial part in developing successful
in-house IPs like Bluetooth and WLAN core. Veena is a seasoned designer as well
as an academician. Her experiences would be useful for both industry and academic
needs and help engineers to take up path breaking design challenges.

Ashok Soota, Executive Chairman Happiest Minds, is widely recognized as one of
the pioneering leaders of the Indian IT industry.
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xii Foreword to the First Edition by Ashok Soota

He was also Founding Chairman and MD of Mindtree, a company he led to a
very successful IPO. Prior to Mindtree, he led Wipro’s IT business for fifteen years.
He also led the turnaround of Shriram Refrigeration into a highly profitable com-
pany after four straight years of losses.

Ashok has been the President of leading industry associations like Confederation
of Indian Industry (CII), a member of the Prime Minister’s Task Force for IT and on
the Advisory Council for the World Intellectual Property Organization, Geneva. He
is a Fellow of INAE and CSI and on the Board of Governors of Asian Institute
Management (AIM), Philippines. He is a recipient of multiple IT Person of the year
and Lifetime achievements awards.

Ashok’s philanthropic contributions are channeled through Ashirvadam, a Trust
he has created for environmental protection and help for the needy including voca-
tional training, education and medical assistance.

Ashok is co-author of the National bestseller — Entrepreneurship Simplified —
From Idea to IPO.

Executive Chairman, Happiest Minds Ashok Soota,
Bengaluru, Karnataka, India



Foreword to the First Edition
by Walden C. Rhines

VLSI design of “Systems on a Chip”, or SoC’s, has suddenly taken a change in
direction. Traditional computer architectures can no longer solve the computing
problems of tomorrow. New, innovative approaches to SoC design will use non-Von
Neuman architectural approaches with embedded neural networks to make prob-
lems like pattern recognition solvable in real time. Suddenly, the world of venture
capital funded fabless semiconductor companies has exploded, as these companies
propose innovative SoC’s to solve “domain-specific” problems like vision, sound or
smell related pattern recognition. Being able to do a few specific types of operations
extremely well now becomes much more important than doing a wide variety of
things very well. Beginning in the second half of 2017, the amount of venture capi-
tal money invested in fabless semiconductor and IP startups has accelerated, reach-
ing an all-time record in 2018.

Books like A Practical Approach to (VLSI) SoC Design provide guidance for
aspiring designers and academics who wish to join this parade of innovation. Rarely
do opportunities like this emerge in the semiconductor industry. But this is a time of
new ideas where the ability to translate algorithmic innovation to silicon can drive
quantum steps forward in machine learning capability. The first wave of semicon-
ductor technology was driven by physical component innovation. This wave will be
driven by system innovation, combining unique software with clever hardware
architectures. It will be an exciting revolution in computing.
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Xiv Foreword to the First Edition by Walden C. Rhines

Walden C. Rhines is President and CEO at Carnami. Prior to this, he was the CEO
Emeritus of Mentor, a Siemens business, focusing on external communications and
customer relations. He was previously CEO of Mentor Graphics for 25 years and
Chairman of the Board for 17 years. During his tenure at Mentor, revenue nearly
quadrupled and market value of the company increased 10X.

Prior to joining Mentor Graphics, Dr. Rhines was Executive Vice President,
Semiconductor Group, responsible for TI's worldwide semiconductor business.
During his 21 years at TI, he was President of the Data Systems Group and held
numerous other semiconductor executive management positions.

Dr. Rhines has served on the boards of Cirrus Logic, QORVO, TriQuint
Semiconductor, Global Logic and as Chairman of the Electronic Design Automation
Consortium (five two-year terms) and is currently a director. He is also a board
member of the Semiconductor Research Corporation and First Growth Children &
Family Charities. He is a Lifetime Fellow of the IEEE and has served on the Board
of Trustees of Lewis and Clark College, the National Advisory Board of the
University of Michigan and Industrial Committees advising Stanford University
and the University of Florida.

Dr. Rhines holds a Bachelor of Science degree in engineering from the University
of Michigan, a Master of Science and PhD in materials science and engineering
from Stanford University, a Master of Business Administration from Southern
Methodist University and Honorary Doctor of Technology degrees from the
University of Florida and Nottingham Trent University.

President and CEO at Carnami Walden C. Rhines,
Dallas, TX, USA



Preface to the Second Edition

It has been four years since the first edition of this book was presented to readers
with the intention of sharing practical methods of SoC design. The popular recep-
tion of this book, the advancement in the design techniques for the ever-growing
complexity of SoCs, and the increased relevance demanded the new edition of the
book. Edition 1 provides end-to-end SoC design methodology in much practical
way as practiced in the semiconductor industry. This new edition

1. Provides technical corrections, updates, and clarifications in all eleven chapters
of the original book and adds summaries of new developments and annotated
bibliographical references at the end of each chapter;

2. Adds summaries of new developments with references at the end of each chapter;

3. Elucidates subtle issues that readers and reviewers have found perplexing, objec-
tionable, or in need of elaboration.

Teachers who have taught from the first edition should find the revised edition
more lucid while those who have waited for scouts to carve the path in VLSI careers
will find the road paved and tested.

My main audience remain the students — students of electronics, electrical, and
computer science who wonder why designing SoCs is a big deal; students who
wonder how to convert the system requirements to working chips; students who are
amazed about the advancements happening in electronics but not sure of how they
are part of this wonderful journey. It continues to be an important reference book for
researchers and career starters in VLSI design teams. I hope each of these groups

XV



Xvi Preface to the Second Edition

will find the updated content presented in this book to be both inspirational and
instrumental in tackling new challenges in their respective fields of SoC design. I
thank all those who have gone through my earlier book and provided valuable feed-
back, which inspired me to author this edition.

Thank You.

Co-founder and Advisor Veena S. Chakravarthi
Sensesemi Technologies
Bangalore, India



Praise for the First Edition

I am a system architect who works for a semi company and your book has
helped me to have the big picture about SoC design. As you mentioned in the
preface, this book is very close to industry practice and will help the engineer
to understand the whole picture. A person like me who works as a system
architect can benefit from this book to make the design flow become more
complete. The evil is always in the detail, your book helps me cover it all.

Thanks
T J, System Architect

The book A Practical Approach to VLSI System on Chip (SoC) Design — A
Comprehensive Guide by Dr. Veena S. Chakravarthi, truly lives up to its name.
It is a practical guide to newcomers to the area of VLSI Design and compre-
hensive enough to be even used by industry veterans. I work in the VLSI
design industry and teach design. I have seen this book being used effectively
in both places. This very neatly organized book is easy to access for any topic
and the examples make it very effective to quickly understand not only the
concepts, but also quickly apply them.

The reissue of this popular book in its Second Edition with updated mate-
rial should be an indispensable companion to practicing VLSI designers and
students interested in pursuing a career in VLSI design.

Kumar M N
Chief Strategy Officer, Lead SoC Technologies
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Xviii Praise for the First Edition

The book covers all necessary details of design and best practices to achieve
power, area, and performance for career starters in VLSI. The basic design
modules, scripts and the design flow explained in the book provide practical
insight to the design process from RTL to Tape out. I am happy to be part of
designing some of these examples for Veena. I would recommend this book to
all the VLSI designers.

Vaibhav Rajapurohit
Senior silicon design engineer, Google

The book A Practical Approach to VLSI System on Chip (SoC) Design — A
Comprehensive Guide by Dr. Veena S. Chakravarthi, provides more the than
obvious SoC design method practiced. It prepares the reader for the changes
necessary to meet ever-increasing needs of semiconductor chip designs. In the
new era of intelligent computing and the large number of emerging applica-
tions like automotive, medical, IoT for SoCs, this book provides relevant
ways to design them. We refer to this book quite often during our training
activities.

Shivananda R Koteshwar
Group Director, Synopsys

Professionally I have known Veena for over 15 Years. I was closely associated
with her during writing of the book A Practical Approach to VLSI System on
Chip (SoC) Design — A Comprehensive Guide. 1 see it as an honest effort to
bring design flow practiced in the industry into this book. I strongly recom-
mend this to all VLSI designers.

Dinesh Annayya,
Director in Engineering - NEXT Edge Compute Engineering, Intel India.

This book by an author with decades of experience is sure to provide much-
needed guidance to aspiring career starters, practicing engineers, faculty and
students in VLSI. The very fact that this book is getting downloaded in large
numbers is a testimony to its relevance. I hope the next edition of this book
will cover all the recent advancements in the field of semiconductors which
will further meet the expectations of people working in this exciting field.

Dr. K S Sridhar
Registrar, PES University



Preface to the First Edition

Having worked in semiconductor design industry for over two decades, it was my
strong desire to pass on the knowledge of system on chip design to the next genera-
tion. Therefore, I conceived the idea of writing a book on A Practical Approach to
VLSI System on Chip (SoC) Design.

The book intends to present a comprehensive overview of the design methodol-
ogy, environment and requisite skills that are required for design and development
of the System on Chip (SoC).

It ensures that engineers are aware and are able to contribute effectively to design
companies from day one up to the development of complex SoC designs.

While this book is targeted at electrical and electronic engineers who aspire to be
VLSI designers, it’s also a valuable reference guide for professional designers who
are part of development teams in VLSI design centers - the ones behind complex
system-on-chip solutions.

The book aims to give readers a comprehensive idea of what one has to do as a
VLSI designer. It expands on the arsenal of skills they need to be equipped with, the
responsibilities of the job, and the challenges that they should anticipate. This infor-
mation is based on my experiences in the semi-conductor industry and academics
over the past twenty-five years.

Typically, electronic engineers aspire to become VLSI designers either during or
after their undergraduate or graduate studies. Unfortunately for them, they usually
don’t possess the requisite skills and design techniques to circumnavigate the chal-
lenges they’ll face in the industry. Meanwhile, young VLSI designers in the industry
struggle to see the big picture of the design process. It’s not practical for one person
to work in all areas of the VLSI design and development process. This book is my
attempt to provide answers to both groups, so that they can plan, understand, and
equip themselves with the necessary skill sets. The design case relevance in every
chapter and the design examples in chapter 11 help the readers realistically visualize
problems and solutions encountered during VLSI system design.

The target audience for this book is engineering students who are pursuing a
degree in electrical, electronics and communication and allied branches like bio-
medical, biotechnology, instrumentation, telecommunication, etc. Also, engineers
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XX Preface to the First Edition

in the early stages of their career in the semiconductor industry can refer to the book
for a complete understanding of the chip design process.

Though the books covers the complete spectrum of the topics relevant to System
on Chip (SoC) using VLSI technology, it is good to have a fundamental understand-
ing of logic design as it is a prerequisite to follow the contents of the book.

Though India is seen as a silicon country with Bangalore as a silicon city with
many fabless design centers in VLSI, it is facing an acute shortage of employable
VLSI design engineers as a large number of fresh engineers graduating from univer-
sities are not readily deployable for design jobs.

Statistics show that there is a demand for over 3000 design engineers per annum
and that it will soon grow to over 30000 per annum in the coming years. Engineering
schools currently cater to only 50% of the annual demand. Globally, the scenario is
not too different.

In the current scenario of chip and resource shortage, VLSI design engineers
have a promising and bright future ahead and can expect a challenging and reward-
ing career. According to Gartner's recent market research, the semiconductor indus-
try is one of the fastest growing industries, at 26% annually, globally. And so are
VLSI design jobs. Skilled VLSI people are always in demand, catering to the most
challenging system on Chip designs, new versions of EDA tools addressing hetero-
geneous complex system integrations, Fabrication Technology correlations etc.
Countries like Egypt need around 10,000 skilled VLSI designers.Globally, the
semiconductor industry is one of the fastest growing industries at 26% annually.
And so are VLSI design jobs. Skilled VLSI persons are always in demand, catering
to the most challenging system on chip designs, new versions EDA tools addressing
heterogeneous complex system integrations, Fabrication Technology correlations
etc. Countries like Egypt need around 10,000 Skilled VLSI designers.

The design productivity gap - a shortage of skilled manpower that can convert
transistors (that fabrication technology offers), to useful ones, is real. Hence there is
a need to develop skill-sets to suit the semiconductor jobs and bridging this gap.

It would not have been possible to realize this project without the support of
many of my friends, colleagues, and family. First, I wish to thank my father
Mr. R S Chakravarthi, a noted journalist and Rajyotsava awardee from Karnataka,
India, whose literary genes were responsible for harbouring my desire to write a
book. My heartfelt thanks to my loving family, especially to Dr. K S Sridhar, my
husband, K S Abhinandan, K S Anirudh, my sons; and Shradha Narayanan, my
daughter-in-law for their support. I am indebted to my ex-colleague, Dr. M S Suresh,
Scientist, ISRO, who patiently read each of my chapters and offered line-by-line
reviews.

I wish to thank my ex-colleagues Mr. Sathish Burli for describing the software
development flow and Dr. K S R C Murthy for sharing information on packaging
with me. I thank my ex-colleague and dear friend Mr. Dinesh for identifying IOT-
SoC reference design which is available in www.opencores.org for the case study.
My steadfast team comprising of Vaibhav Rajapurohit, and my dear students
Amruthashree, Aditya, tried out all the design examples and ensured that they are
working and ready for the reference. Thanks to them.


http://www.opencores.org
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I am also grateful to the semiconductor industry for having embraced me so
warmly. And I’m mighty thankful to Mr. Faraj Aalaei, Founding General Partner,
Candou Ventures, Mr. Ashok Soota, Executive chairman, Happiest Minds and Mr.
Walden C Rhines, President and CEO at Carnami for taking time out of their busy
schedules to write the foreword for this book.

I thank all the organizations and institutions I have worked with for contributing
directly or indirectly to the naming of this book.

Last but not the least, I thank my superpower, who gives me the motivation and
constant energy to take up projects beyond my capability and make them happen.

I will be very happy if users find each chapter useful and try out design examples
and reference design and subsequently make VLSI their career choice. I am curious
about your feedback and criticisms. I'm sure it’ll go a long way in bettering
this book.

Thank You

Veena S. Chakravarthi is a Bangalore-based technologist, system-on-chip archi-
tect and educator. Over a career spanning three and half decades, she has spawned
of several VLSI design & incubation centres and managed several high-performance
tech-teams at ITI Limited and across various MNCs like Mindtree consulting pri-
vate limited, Centillium India private limited. Transwitch India private limited,
Ikanos communications private limited, Periera ventures, Asarva chips and tech-
nologies, Sankhya labs, Prodigy technovations private limited and Synopsys, India
She holds a PhD from Bangalore University and an MPT certification from IIM
Bangalore.



About the Book

Why read this book?

The main goal of bringing out this book is to present the end-to-end design flow of
a system on a chip (SoC) in the comprehensive manner possible. This book is tar-
geted to students of undergraduate and graduate courses in computer science and
electrical and electronics engineering, and new hires in VLSI design teams. It can
also be an important reference for professional designers who are part of develop-
ment teams in VLSI design. It aims to give the readers a complete perspective of
what one must do as a VLSI designer, the skillset required, the job content, and the
challenges faced in chip design. The information is based on the author’s personal
experience in the semiconductor industry, whose academic career spans over three
decades.

What Problems Does It Solve?

Typically, engineers during their undergraduate and graduate courses aspire to
become VLSI designers but lack knowledge of the necessary skillset for designing
complex SoCs. Paradoxically, VLSI designers in the industry will not have a big
picture of the SoC design process end-to-end, as chip design is a very complex and
specialized process. This book attempts to provide answers to both groups so they
can plan, understand, and equip themselves with the necessary skill sets.
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XXiv About the Book
Who is the audience?

Students of electrical engineering, electronics and communications engineering,
and computer science, as well as students of allied fields such as biomedicine, bio-
technology, instrumentation, and telecommunication, are the intended audience for
this book. Also, engineers in the early stage of their careers in the semiconductor
industry can refer to the book for a complete understanding of the chip design pro-
cess to get the complete process of the design and development cycle of System
on Chip.

What are the prerequisites to reading this book?

Though the book covers the a complete spectrum of topics relevant to System on
Chip (SoC) using VLSI technology, it is good to have a fundamental understanding
of digital design, working knowledge of Linux platforms, and scripting languages
as a prerequisite.

Why become a VLSI designer?

Though India is seen as a silicon country, with Bangalore as a silicon city with many
fabless design centers using VLSI technology, it is facing an acute shortage of
employable VLSI design engineers. Reports show a demand for more than 3,000
design engineers per year, which will soon rise up 30,000 per year in the coming
years. With the shortage of chips and countries signing strategic plans for funding
semiconductor operations, it is an excellent opportunity to be part of the growing
industry. In this scenario of chip shortage, a VLSI design engineer has promising
and bright career prospects, with a challenging and technically satisfying career.

Globally, the semiconductor market is estimated to hit $1 trillion by 2030, and
the Indian semiconductor market is expected to grow at a CAGR of 16% to reach
$64 billion in 2026, according to a report by IESA. Skilled VLSI personnel will be
required to cater to the most challenging SoC designs using the latest EDA tools, for
complex system integrations and to address the challenges of submicron process
technologies. This means the design productivity gap exists. There is an urgent need
to develop the skilled resources to bridge this gap.
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Chapter 1
Introduction

1.1 Introduction to CMOS VLSI

VLSI stands for very large-scale integration. Complex systems on silicon chips are
developed using VLSI technology. The most dominant VLSI processing technology
is CMOS VLSI. The system uses many millions of transistors on a chip. Transistors
are basic device elements that are used to develop many complex systems. The sys-
tem is realized on a semiconductor chip and is hence called system on chip (SoC).
The advantages of CMOS VLSI SoCs are small size, low power, and high speed.
Smartphones, electronic gadgets, and infotainment products use SoCs. CMOS is the
dominant VLSI technology. CMOS technology for decades obeyed Moore’s law.
Moore’s law states that “the number of transistors in a chip doubles every 18
months.” This has proved correct ever since 1965. But this posed, and continues to
pose, innumerable challenges to the designers.

1.2 Application Areas of SoC

System on chip (SoC) has become an indispensable part of many products in every
domain. Applications in the communications, data storage, and high-tech comput-
ing domains traditionally use SoCs. Advanced SoCs of today have even penetrated
into medical, automotive, infotainment, security, and defence applications. SoCs are
used in almost all applications that need signal, data, computing and communica-
tion. Some of the visibly noted applications are the following:

e All IOT applications in healthcare, automotive, home automation, and industry
automation.

» Large data centers and data farms.

* Smartphones and mobiles.
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* Medical devices.

e Satellite communications and space technologies.
» Agriculture automation technologies.

* Multimedia infotainment.

1.3 Trends in VLSI

System on chip industry has developed rapidly over the last few decades. Systems
have become complex, dense, heterogeneous, large, robust, and highly powerful
with low-power consumption. The design methodologies have matured and are
most complex. The future trends in growth of VLSI technology are discussed under
the following heads:

e System on Chip complexity.

e Performance Power and Area (PPA) Goals of SoC.
e Size of the SoC Dies.

* Design Methodology.

1.4 System on Chip Complexity

Since the time transistors were invented in the past six decades, the physical dimen-
sion of the transistor has been constantly shrinking. This has resulted in packing
more and more transistors on a silicon wafer, integrating more and more functional-
ities into the circuits. This phenomenon is called scaling. And this is still continu-
ing. But it is predicted that in the next couple of years, the scaling of transistor’s
dimensions will reach a point where it will be so expensive that it will become
commercially not viable to scale down further. This is partially true. The cost of
fabrication has grown exorbitantly, making design and development more critical to
make it correct by design. Technological advancements have continued to scale
down the features further. Recently, the semiconductor foundries have announced
3 nm technology for commercial SoC development. And researchers claim the suc-
cess in developing technologies to realize device features of 1 nm [1]. This shows
that even today, there are researchers who believe that scaling down the feature size
is possible using technologies beyond CMOS technologies and alternative materials
to the most commonly used ones. This appears to be more promising than existing
methods for developing highly integrated systems on a chip (SoC). Scaling down to
an atomic size (0.1 to 0.5 nm) is currently thought to be impossible. But the fact of
the matter is that it is scaling that has driven the tremendous growth in the SoC
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industry in computation and communication applications. Processor processing
power has increased many folds, changing the way we sense, process, store, display,
and communicate information of any magnitude. Over the past couple of decades,
the complexity of chips has increased from simple time critical circuits to
multiprocessor-multicore systems. Today’s electronic products need very few off
the chip components, apart from the system on chip (SoC) unlike the products of
yester year. The trend in integrating more and more circuits to form SoC was the
result of advancement in VLSI allied technologies. Advancement in CMOS VLSI
fabrication processes have enabled the development of the most complex system on
chips possible. This was accelerated by the feature enhancements in EDA tools with
intelligent algorithms. Cerebras’ wafer-scale engine (WFE) chip with 2.6 trillion
transistors—that's 2,600,000,000,000 with 850,000 cores on TSMC 7 nm process
technology—was successfully fabricated in 2019. The largest general-purpose pro-
cessor with 114 billion transistors and largest graphic processor unit (GPU) with 80
billion transistors are commercially available. Other types of ICs, such as field-
programmable gate arrays (FPGAs), have the largest transistor count of around 50
billion transistors with 9 billion logic cells. This demonstrates the complexity of the
SoCs of today (Fig. 1.1).

Fig. 1.1 Cerebras’ wafer-scale engine. (Courtesy: Cerebras)
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1.5 Integration Trend from Circuit to System on Chip

VLSI designs in 1970s were small time critical circuits and required to work with
standard general-purpose processors to realize integration on printed circuit boards
(PCBs) with many other devices. During the earlier days of design, the time critical
circuits were schematically drawn in the EDA tool and were interconnected with
other modules. The advancement of CMOS technologies, packing more and more
transistors in a small area, and the invention of the automated synthesis tool (con-
verts the design representation using hardware description language into schematic),
made it possible to define large complex designs for complete systems. The scaling
phenomenon, an advancement in process technology and the improved design
methodologies enhance the compatibility of non-digital circuit fabrication to CMOS
fabrication, enabling the integration of non-digital components. The integration can
be on the package containing ICs (technology called SIP) or on to a chip as system
on chip (SoC). Non-digital components include RF, analog, and sensor devices.
Figure 1.2 depicts the International Technology Roadmap for Semiconductors
(ITRS) trend of integrating digital and non-digital components into a single chip.

More than Moore: Diversification

j

Non-digital content
System-in-package

Information
Processing

Digital content
System-on-chip
(SoC)

More Moore: Miniaturization

Baseline CMOS: CPU, Memory, Logic

R ERE

Fig. 1.2 The International Technology Roadmap for Semiconductors depicts the ITRS trend of
integrating digital and non-digital components in a single chip as a dual trend: miniaturisation of
digital functions (“More Moore”) and functional diversification (“More-than-Moore”). (Source:
ITRS white paper)
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The International Technology Roadmap for Semiconductors (ITRS) has empha-
sized that scaling in CMOS technology and its associated benefits in terms of per-
formance will continue. This direction for further progress is labelled “More
Moore.” The second trend is integrating non-digital functionalities to contribute to
the miniaturization of electronic systems, although they do not necessarily scale at
the same rate as digital functionality. This trend is named “More-than-Moore” (MtM).

Advances in EDA tools made it possible to realize complete systems on chip by
means of automation and analysis capability. SoC modelled with its behavioural
description in hardware description language (HDL) is converted to schematics by
synthesizing and the design process is called physical design was able to generate
the design database (this database is in GDS II format, and the process of submitting
the database to the fab is called tape out) which is used directly in the fabrication
process of chip. In the present day, VLSI designs are all system on chip designs of
great complexity. The complexity of the SoC chips ranges from simple microcon-
troller systems to large networks on chips utilizing hundreds of millions of transis-
tors. Figure 1.3 shows the evolution from a simple circuit on chip to a system on
chip (SoC).

Today’s SoCs, for example, smartphone SoCs like Qualcomm’s snapdragon
series, contain embedded processors like an ARMv8 processor, general-purpose
processor, a DSP, RF transceiver, WLAN 802.11 ac cores, embedded memories,
cache, and analog interfaces. Each of the SoC’s functional cores WLAN 802.11 ac
core and RF transceiver, is controlled by one or more embedded processors of vari-
ous complexities. Another example is Intel’s i-series chips, which contain multiple
processor cores that can function independently and have fast interface cores com-
plying with interface standards like PCI Express, USB, and on-chip memories.

555 Timer 8051 micro contralier ARM SOC

curtesy: Intel curtesy; :Chumnett . ARM

Source; Wikipedia; figures icensed under GFDL

Fig. 1.3 Complexity trend in ICs
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Fig. 1.4 Complexity trends in computation system on chip
1.6 Speed of Operation

Another trend observed over the last six decades is the phenomenal increase in
the speed of system. Figure 1.4 shows the trends in speed, power, transistor density,
and the number of logic cores. High-speed systems on chips (SoCs) developed by
leading semiconductor companies claim to operate at a frequency of 2.5 to 3
GHZ. Also, few of the system on chips support the data transfer rate of 100 GB/s.
All these trends offered many challenges to the designers, and this resulted in
changes in design methodology over the years. These challenges are responsible for
devising new design methods and modelling at the high abstraction levels of
system hierarchy.

1.7 Die Size

As the transistor size shrank, more and more transistors were packed in smaller area
on a silicon die; thus, the transistor density (number of transistors per unit area of
silicon) increased. This resulted in realizing more and more functions in a small area
of the die and enabled the realization of complete coordinated functions of the sys-
tem to be designed on the die. To cope up with Moore’s law, die size increased by
14% every two years (Source: Intel), thus enabling the realisation of a complete
system on chip (SoC). Thus, began the era of miniaturization, which resulted in
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Fig. 1.5 Generations of computers. (Source: IBM)

generations of computers ranging from main frames to personal computers of high
performance. Figure 1.5 shows three generations of computers made by system on
chips (SoCs).

Today’s high-performance smartphones which can be carried in pockets are the
results of this miniaturization and integration of non-digital functional blocks in the
VLSI technology.

1.8 Design Methodology

To complement the advancements in VLSI technologies over the past six decades,
the design methodology has evolved over the years. This was made possible by the
availability of large computing resources and the development of design automation
tools. These tools can be considered as linchpin technologies, which are major
enablers for complex SoC design. Examples are synthesis tools, simulators, STA
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Fig. 1.6 EDA tools complementing the technological advancements

tool, and physical design tools. Figure 1.6 depicts the EDA tools complementing the
technological growth by using computerized automatic methods in place of hand
designs. Further, the design productivity gap instigated the virtual design core
developments and made reuse an inevitable choice in the large designs of today.
During this time, the design entry methods changed from simple schematic entry to
the interconnection of many functional design cores of processors and peripherals
(called intellectual property cores—IP cores). The intellectual property core is a
functional block that can be bought on licencing or royalty terms. Once bought, it
can be reused multiple times. The number of intellectual property (IP) cores being
integrated is close to a hundred and more in present-day systems. Enabler to this
advancement is also the high computation capability of workstations and systems,
which enabled large design databases and verification by simulations.

The choice of design methodology for a SoC depends on conflicting factors:
performance (in terms of speed or power consumption), cost, and volume. Major
design options are custom design, standard cell-based design, and array-based
design. A complex SoC design may employ any or all of these options.

1.9 SoC Design and Development

With the advancement of technology, the design and development environment of
SoC is constantly upgraded with newer advanced skill sets, intelligent tools with
advanced algorithms, standard design guidelines resulting in more predictable chip
performance, modeling and hardware description languages, high-capacity devel-
opment systems operating at high frequency of the order of tens of GHz, large
memories of the order of multiples of terabytes and large processing power. This
demanded human resources with a new skill set.
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1.10 SKkill Set Required

The skillset required in the VLSI designer changed from circuit fundamentals to
ability in realizing the the functionalities by logic definitions and modeling using
hardware description languages as the design complexity and methodology changed
over the past couple of decades with advent of intelligent EDA tools. The major
hardware description languages used to describe the hardware functions are Verilog,
SystemVerilog and VHDL. This should be supported by knowledge of the tool
usage to get the desired functionality by guiding the tools with proper input of the
design description files and constraints. It is important for the designer to have fun-
damental knowledge of chip design and design flow. Scripting languages like
TCL-tk, Perl will come handy in automating the simulation, synthesis, and STA
scripts which are to be run iteratively and when reports and logs generated by design
tools are to be analyzed. Most importantly, imagining the hardware and then coding
for it helps in hardware realization and debug. Flexibility to work in any department
of design like logic design, synthesis, timing analysis, physical design, and FPGA
validation, makes a designer the most desirable.

1.11 EDA Environment

As the design complexity evolved from time critical circuitry to system on chip, the
algorithm-based tools for synthesis and timing analysis, and physical design tools
like placement and routing, got developed and matured to the extent that the tools
were able to write out design databases for the most advanced fabrication technol-
ogy interface which mask is making equipment. The design database is used to
make masks based on advanced optical and electron beam lithography.
Simultaneously, the verification methodologies such as Universal Verification
Methodology (UVM) supported by cycle-based and event-based simulators and
advanced hardware description language like SystemVerilog help to succeed in the
development of complex SoCs in first attempt. Validation results of these chips
show great correlation to design simulations. Major EDA tools used during SoC
design are simulators, synthesis tools, static timing analyzer, P&R tools, parasitic
parameter extractors, and formal verification tools such as equivalence checkers,
design and electrical rule checkers, etc. Looking at the complexity of SoCs, there
are tools powered by machine learning and artificial intelligence (AI) that help the
designer to take right design decisions at every level of design flow. Some tools are
already being used in placement stage of SoC design. For advanced technology
nodes, there are also tools which take in the design database and generate mask data
with necessary process parameter corrections which help in getting processing done
first time right. FPGA-based development, which was initially viewed as competi-
tion to VLSI development began to be viewed as complementing the VLSI design
process for first-time SoC success.
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1.12 Challenges in All

Trends and advancement discussed in previous sections shows that they require
constant upgradation of the skills and techniques to adapt to the fast-changing fab-
rication technology by scaling and design methodology in terms of tool usage and
system modeling. In addition, electronic products are, as they are characterized by
obsolescence, driving shorter development cycles and shorter time to market. This
drives VLSI designer to be on their toes to be smarter, efficient, and knowledgeable
about the advancements in tools to be able to contribute to the development of sys-
tem on chip. Technically, the more and more integration of the functional blocks and
its realization by fabrication using CMOS and CMOS-compatible technologies
results in a lot of on-chip variations, resulting in huge challenges to achieve large
yield and SoC performance. Debugging bad SoCs is extremely challenging. Power
management is another major challenge of today’s SoC. It is essential to have inno-
vative power management designs to curtail power consumption, good quality
power regulation, and conversion efficiency. Packaging technologies like SIP pose
the challenge of good quality integration and power management and can become
the alternative to SoC.

Reference

1. ‘Taiwan’s TSMC claims breakthrough on 1nm chips’ News reports
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2.1 Partl

2.1.1 System on Chip (SoC)

System on chip (SoC) is defined as the functional block that has most of the func-
tionality of an electronic system. Very few of the system functionalities, such as
batteries, displays, and keypads are not realizable on chip. CMOS and CMOS-
compatible technologies are primarily used to realize system on chips (SoCs).
MEMs-based sensor technology, Bi-CMOS technology, and memory technology
are some of the CMOS-compatible technologies.

Present-day SoCs are far more complex. They contain hundreds of processor
cores, tens of DSP engines, and many interface and protocol IPs connected on the
high-speed bus as a network on chip cores. Typical SoCs contain the most essential
functional blocks of products. In addition, they have on-chip memories and test and
diagnostic cores, which help to make them robust and reliable.

2.2 Constituents of SoC

A typical SoC consists of the following functional cores:

e Several general-purpose RISC processors.

* One or more DSP processors.

*  On-chip embedded memory/memories.

e On-chip, protocol blocks.

e Controllers for external memory for increased memory.

* One or more standard interface controller cores like USB and PCle cores.

e On-chip clock generation block or clock recovery and stabilization logic blocks.
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* Power management and distribution networks.

* Analog cores.

» User interface blocks like keyboard and display controllers and communication
cores and radio interfaces.

e Sensor and attenuator conditioners or controllers.

In addition, a SoC has embedded software with software loading for booting
functionality with default configurations from factory setup. This is why, when you
buy a product, it works right away without the need for any additional software
installations or setup. Each of the constituents of SoC can be designed indepen-
dently by different design and development methods. The design methods such as
automated cell-based, full-custom design flows (analog, mixed signal blocks, phase-
locked loop (PLL) circuits, pad circuits), MEMs design flows, and structured array-
based design flow (embedded memory) can be adopted when designing them
independently. They are then integrated as single chip or multiple dies stacked and
packaged.

2.2.1 Processor Subsystem Cores

Most SoC with on-chip cores include single or multiple processors. A core is the
smallest unit of processor capable of running instructions on its own and having the
ability to interact with other functional blocks within the SoC. Processors are used
for different on-chip control and data processing functions in the SoC and to config-
ure and control peripheral devices. One such example is a Bluetooth transceiver in
an Internet of Things (I0OT) SoC with its own processor core to configure and func-
tion as per the Bluetooth protocol for its various functional modes. The multimedia
SoC generally has an on-chip processor to process the media data/signal as required
by an application.

The on-chip processor has embedded software for its operation. Multicore pro-
cessors pose an interesting problem from a software point of view, the major chal-
lenge being sharing the processing load in executing the functionality among them
and coordinating to achieve the overall and each core’s individual performance in a
SoC. Figure 2.1 shows an example of one of the architectures of multiprocessor
cores in a SoC. Some of the most commonly used architectures are the following:

* Asymmetric multiprocessing (AMP): In this mode, the SoC architect partitions
the processor SW functionality for each of the cores. This ensures that each of
the processors has different programs residing in the SoC. Each core is indepen-
dent in a way, and runs its own software, and has an exclusive memory space.
Cores may run an operating system (OS) or direct code without an underlying
OS. The software code that runs directly without the operating system (OS) is
called bare metal. Each core will have its own set of interrupts and access-specific
peripherals. Processors in a SoC communicate with each other through shared
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Fig. 2.1 SMP-AMP
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memory or interrupts. All these were planned while architecting the SoC at the
beginning of the development. This includes decisions on memory sizes, types,
and the number of interrupt lines and their types.

e Symmetric multiprocessing (SMP): In this mode, the operating system (OS) is
allowed to decide the best core to run the job on. This also implies that all the
processor cores are generic, and it cannot be determined which core is running a
particular job—it can vary based on the real-time status of the cores. In SMP
mode, the address space of the processors is shared, i.e., all the cores can access
a common memory area because, based on the load conditions, any of the cores
may be asked to do a specific job. Sharing of data is done via memory, which is
controlled by the OS. SMP modes are typically used when the jobs are generic
and the need is a computation resource. Most of the cloud SoCs are of this type.

Based on the application of the SoC, processors can be divided into the following
categories: application processors and control processors.

2.3 Application-Specific Processors

These are typically high-performance computation engines, that run SoC-specific
applications and control the interfaces in the SoC. They tend to run operating sys-
tems like embedded Linux, Android, etc. Most application processors are multicore.
They are driven by clock frequencies ranging from a few hundred of MHz to sev-
eral GHz. Application processors typically run in SMP mode. One such example is
smartphone SoCs.
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2.4 Control Processors

Control processors are used for functions that are tightly coupled with the hardware.
They usually have very tight real-time constraints and need to respond back to asso-
ciated hardware within specific time limits. Most control processors run a real-time
operating system (RTOS) to ensure performance. Clock frequencies for control pro-
cessors are typically in the sub-GHz range. Many control processors also have cus-
tom instructions, that are designed specifically for the identified functions. Each of
these custom instructions combines a set of steps into one single instruction, which
accelerates and optimizes the use of the software for its performance. One such
example of a custom instruction is a cyclic redundancy check (CRC) computation,
where a series of XOR steps could be combined into one instruction. The control
processor cores have custom registers to improve performance. Most of the on-chip
control processors typically run in AMP mode.

2.5 Digital Signal Processors

SoCs are designed for applications that require fast specific signal processing func-
tions such as FFTs, encoding and decoding of bits, and interleaving and de-
interleaving operations. Digital signal processing (DSP) cores offer specific
instruction sets, that are suitable for this type of processing. This allows designers
to embed DSP cores and do the signal processing functions in software rather than
hardware. From a SoC point of view, DSPs can be considered as control processors.
They typically have their own memory areas and communicate with other proces-
sors using shared memory or interrupts. DSP cores in SoC are typically pro-
grammed in bare-metal software.

2.6 Vector Processors

In many SoCs, there are very specific tasks which are too small to add a control
processor or a DSP and, at the same time, are best not done in hardware for flexibil-
ity purposes. For example, consider an encryption algorithm, which may have to be
changed, based on region the SoC is being sold in. In such a case, designers would
like to have a small core, which they can load with the specific algorithm based on
the region. This would keep the SoC generic. Region-specific adaptation could be
done via software, rather than designing SoC variants or putting all the hardware
into the SoC. Vector processors can be considered as mini-DSPs which are
loaded and initialized on the go by one of the other processors in the SoC. They are
always bare-metal codes. There are many commercially available SoCs.
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2.6.1 Embedded Memory Core

Embedded memories are static RAMs, which are available as hard macros with
wide range of configurations for a particular technology. The desired size and orga-
nization can be configured using a memory compiler tool provided by the memory
vendors. Memory compiler can generate all design relevant files with views of the
selected memory model that are required for the design stages. It can write out an
RTL model for simulation, timing models for timing analysis, and structural frame
views for physical design steps. Apart from the size of the memory, different con-
figurable parameters supported by the memory compiler are aspect ratio, number of
sub-banks, and row and column address multiplexers depending on the desired
(PPA) performance like access time, power consumption, and area. Memory com-
piler can also include BIST circuitry and peripheral circuitry such as redundant bit
addition and error correcting code (ECC). On-chip compiled memories designed in
this manner are optimized for performance but are fixed for a chosen configuration.
As a design guideline, small memories of sizes ranging from 1 to 10Kbytes are
designed using flip-flops as register arrays. Medium-sized memories are typically
SRAMs. A typical SRAM memory layout is shown in Fig. 2.2.

For larger memories, there are compiled memories available that are optimized
for area, power, and speed of operation. These memories are of single transistor
memories called “1 T memories”, suitable for SoCs. These memories are denser and
are used in memory-rich SoCs for data storage on the chip. Level 1 and Level 2
memories used as cache memories are typically SRAMsS in processor SoCs.

Fig. 2.2 SRAM memory cell layout
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2.6.2 Analog Cores

Analog cores like OP-AMPs, transceivers, power amplifiers, serdes, phased-lock
loop (PLL), and mixed signal blocks are typically found in most common SoCs.
These are designed separately using mixed signal design procedures and are inte-
grated as hard macros in the SoC during the physical design stage. The simulation
models of the analog cores are interface timing models, which are verified in full
SoC level simulations. As an example, the layout of OP-AMP is shown in Fig. 2.3.

2.6.3 Interface Cores

Another important constituent of the SoC is the various interface or communication
blocks which provide connectivity of SoC to external peripherals or devices for
greater onboard integration. Some of the examples of interface cores are USB,
UART, SPI, DDR2, PCle, AXI, and AHB master/slave controllers. These cores
commonly have local processors and embedded software performing the protocol
functions of these cores. These cores are either designed in house or third-party IP
cores are available in hard or soft cores.

2.6.4 On-Chip Clock Generators, PLLs, and Sensors

In addition to the SoC constituents that are responsible for functional operations,
there are some necessary on-chip functional blocks which are required for the SoC
operation. These are:
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*  On-chip clock generators.
e PLLs.
e On-chip sensors.

2.7 Part2

2.7.1 SoC Development Life Cycle

Product requirement is captured by the market research in the area of business for a
company. Market research is the study to identify the customer’s needs and provide
technology solutions in the area of company’s objective. A probable technology
solution is detailed to identify the system requirements and feasibility of its devel-
opment as a system on chip or SoC solution. For example, an agritech company may
identify SoC solutions for drones to be applied for surveillance of agricultural lands,
crops, and remote monitoring. However, the SoC development is considered
only after a thorough understanding of the market demand and development feasi-
bility. Once decided to develop a SoC for the wireless drone controller, a technical
study is carried out to capture the functional requirements. A functional specifica-
tion is then derived from the functional requirements. Typical functional specifica-
tions of such a SoC include transceiver specifications, range of control, regulatory
compliance requirements, protocol standards applicable, power requirements, etc.
These details are documented in the market requirements document (MRD) with
a preliminary estimate of development and manufacturing costs. This is the first step
in the product development cycle. From the MRD, the requirements for the product
and system are derived and documented as product requirements document (PRD).
PRD documents the application scenarios and identifies various functional cores
that are required to be integrated in the proposed system. It defines electronics hard-
ware system requirements, peripheral modules, user interfaces, casing, etc. The
electronic system is then mapped to the targeted appropriate technology for devel-
opment, and this is when the system on chip SoC is visualized. The system architect
further studies the feasibility of the design within the engineering and cost con-
straints. This is an iterative process involving many reviews and cross-functional
discussions between marketing and systems groups. Once accepted, PRD is passed
to the engineering team for studying the feasibility of development. The system on
chip is targeted at the target VLSI and related technologies. SoC is then partitioned
to subsystems which are then identified, for in-house modules or off-the-shelf IP
cores. A decision on suitable general-purpose processors is taken after technical
feasibility, which sometimes involves technical experimentation and analysis.
Further, functions that need special signal processing functions requiring dedicated
digital signal processors or modules are identified which gives input for actual
hardware-software partitioning of the system. All these are highlighted in the high-
level design document (HLD) of the system. It is from here that the engineering
design teams plan and start to design and develop the SoC.
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2.8 SoC Design Requirements

HLD for a SoC lists explicit functional specifications, detailing the applicable tech-
nology standards, certification needs, and packaging requirements. The technology
standards to be followed during SoC development for safety or interoperability are
defined by professional bodies such as IEEE, ATSE, or ITU-T, among others. SoC
performance factors (PPAs), like power, area, and speed, become the chip ven-
dor’s unique selling proposition. Hence, it is essential to identify innovative ways to
design SoCs to meet the set design goals.

2.9 Design Strategy

SoC design approach depends on a number of factors, including type of SoC (digi-
tal, analog, or mixed signal), PPA (power performance and area), EDA tool flow,
and if it is the first-generation or subsequent design versions. In most of the SoC
designs, the functional cores that are of high value to the company are developed
in-house, and the rest of the general-purpose IPs are bought from third-party design
vendors and integrated. It is essential for every designer to be aware of the strategy
to align his/her role in the design and development of SoC. The commercial viabil-
ity of the SoC depends on design complexity, PPA needs, target process technology,
and the volume planned to be produced. Design and development of high PPA SoCs
is expensive. To be competitive in the market, it is required to minimize the cost of
development. SoCs used in consumer applications are very cost sensitive and must
be competitive. Achieving low cost and high PPAs for SoC are possible only if they
are manufactured in large volumes. However, there are exceptions: SoC require-
ments in strategic areas like defense and space applications demand very high per-
formance but are needed in small numbers. In such cases, the cost of the SoCs will
be small fraction of cost of large systems. However, in all categories, the goal of
designers is to minimize nonrecurring engineering (NRE) costs and aims to achieve
a high PPA for SoCs. When SoC is in production, the cost per part will be a function
of die size, targeted fabrication technology, packaging, testing, and validation where
the economy of scale works. The larger the production volume, the lower the cost.
All these require the right strategy for designing the SoC.

2.10 SoC Design Planning

SoC design starts with the development of chip architecture. Chip architecture con-
tains descriptions of functional blocks and their interfaces, communication interface
blocks, the clock and reset strategies, power up and booting procedures, data paths,
control paths, and intellectual property (IP) cores. It is to be noted that complete
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clarity on all the details may not be available at this stage, but this initial document
serves as a starting point. System architects develop this document by experiment-
ing with and modelling some of the blocks if required. This also forms the basis for
resource planning, defining tool flow, and design infrastructure planning. Chip
architecture is used to decide on the number of designers, and verification engi-
neers, number of design workstations, networking needs, and EDA tools required as
planned. Design planning in new design houses starts with one or two modelling
engineers and modeling/simulation tools, and the rest of the requirements are topped
up eventually in due course of development. A chip architecture document is used
to define the design flow and methodologies depending on the SoC complexity and
performance requirements. Custom design flow is adopted when SoC performance
needs are very high, and an automated cell-based design flow is adopted for digital
designs. Automated cell-based design flow is also called the standard cell design.
Analog blocks like high-speed data converters, clock generation circuits, PLLs, and
high-performance serializer/de-serializer (serdes) are the candidates for custom
design methods. Custom design methodologies are not suitable for large SoC
designs. For such SoC designs, standard cell-based design flow is the right choice.
In this approach, a library of pre-designed standard cells of a wide variety of logic
gates over a wide range of drive strengths is used. The standard cell library contains
all the standard logic cells and some of the cells such as adders, comparators,
encoder-decoders, and clock buffers. Most of the EDA tools support this flow. The
standard cell approach has become a de facto industry standard for large complex
SoC design. Deciding the composition of the cell library has become a crucial activ-
ity at present while adopting the right design strategy.

2.11 System Modeling

In the HLD and chip architecture, system blocks are identified with few design
assumptions in terms of processing time, algorithm choice, latencies, and clocking
data path throughputs, which are validated by modelling the subsystem. A system
reference model is developed and is used as a golden reference against which the
actual design is verified. The most commonly used languages for modelling systems
are high-level programming languages like C++, System C, System View, MATLAB,
and Scilab. The system model reassures the correctness of partitions, interfaces, and
algorithms to be used in the SoC design.

2.12 System Module Development Feasibility Study

Though system models validate the implementation possibility to an extent, hard-
ware design constraints may restrict achieving the set SoC design goal. The feasibil-
ity of achieving the PPA goals for SoC is evaluated by alternate implementations on
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development platforms and emulation methods to select the right implementation
techniques. Some of the decisions on parallel and serial functions like cyclic redun-
dancy check (CRC), frame check sequence (FCS), and memory requirements are
decided by these methods.

2.13 IP Design Decisions

SoC will have functional processes and tasks, that are executed on the general-
purpose processors and processor subsystems. General-purpose processor cores are
part of most of the SoCs. These cores are designed for high-performance and opti-
mum area. Typically, there are companies which design the processor or processor
subsystem cores exclusively for varied performance. They offer these cores in many
forms, as IP cores for SoC integration. These are to be validated for performance
and latencies as required by the integrated systems. Application-specific SoC
designers buy processor cores and subsystem cores, DDR controllers, and standard
protocol interface cores as IPs for integration. These are proven IPs for functional-
ity, interoperability, and integration. The IP cores are bought on royalty or license
terms by SoC designers. Availability, reuse, and portability of soft macro modules
to any target technology enables SoC designs to be carried out and offered at a faster
time to market. Processor cores, security engines, and interface IPs like USB,
UART, SPI, and HDMI are examples of such readily available IP cores.

2.14 Verification IPs

Like design IP cores, verification intellectual property (VIP) cores are pre-modeled
and verified soft cores which can be integrated to SoC verification environments.
This helps to uncover the compatibility and misinterpretation of functionalities of
the IP cores in SoC designs. Verification IPs are available on royalty or licence
terms and can be reused in the verification of multiple SoC designs. VIPs are offered
along with a set of standard test scenarios that help to verify the SoC designs faster.
Examples of VIPs are SPI master/slave cores and Ethernet MAC cores. Because
most verification IPs are not be synthesizable, they are used only for design
verification.

2.15 Target Technology Decision

Once the processor subsystems and the IP cores and suitable packages are identi-
fied, the next step is to identify the target technology for SoC processing. This deci-
sion is primarily driven by the power budget for the chip, estimated die size, and
availability of the identified IP cores like PLL, memories, and other essential cores
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in the target technology. It becomes a business decision if the IP cores are not proven
in the targeted technology as it increases the SoC design time. This is an iterative
decision-making process until a suitable target technology decision is made.

2.16 Development Plan

SoC architecture identifies all the required subsystems and IP cores, schedules are
worked out, and depending on the time to market (as decided in the MRD), design
tape out plan is made. Accordingly, a make or buy decision is made for IP cores,
keeping in mind the early market entry advantage for the companies. However, the
third-party IPs may require some design wrappers around them to integrate them
into the system and validation to check the suitability of the integration. Apart from
the standard cell library from the target technology vendors, SoC design generally
requires some additional complex cells called macro/mega cells, which are avail-
able off the shelf even by the EDA tool vendors. Examples of macro cells are “fast
multipliers” and memory arrays. Macro cells can be reused in many future designs,
which can offset the initial design cost. The functional macros are of the hard macro
or soft macro types. Hard macros are cores that are available as designs which can
be integrated into the SoC at the physical design stage. The SoC designer cannot
modify them in any way but can only connect them to the SoC internal blocks
through the input-output signals. Major advantage of using hard macro is that the
macro cell is optimized for PPAs, in terms of size, power dissipation, and speed. The
hard macro has the disadvantage of not being portable to other process technolo-
gies. But generally, for parametrizable hard macro cells, the vendor provides a
macro generator which can be used to generate the macro cell of the required
parameters as configurations. For example, from a memory compiler, it is possible
to generate a wide variety of memory arrays of different sizes. Soft macros are func-
tional modules with predetermined functionality and are available as a synthesiz-
able core. Soft macros can be ported to any process technology chosen for SoC
design. Soft macros are integrated prior to the synthesis stage of the SoC design.
This must go through the synthesis and physical design processes to meet the SoC
design goals. They can be customised to suit the SoC integration. Example is a
multiplier module.

2.17 EDA Tool Plan

EDA tools play a very important role in the SoC design process. EDA tools are used
for functional and timing verification, design synthesis; DFT; physical synthesis;
place and route; and design rule checking during SoC design. They can be broadly
classified as design tools and verification tools. Major design tools are synthesis
tools and place and route tools. Major verification tools are functional and timing
and fault simulators; static timing analyzers; equivalence checkers; design rule
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checker; and electrical rule checkers. There are many tool vendors who offer end-
to-end EDA tools with an easy-to-use graphical user interface for SoC design. Even
then, it is necessary to customize the tool flow based on the SoC design complexity
and type of design. Typically, SoC designs are carried out with EDA from one ven-
dor for design implementation and another set of tools for verification and analysis.
This is because of the complexity involved in SoC design and the belief that the
algorithms used for VLSI design implementation are different from those used in
design verification. This helps to find any mismatches in design during verification.
Apart from the EDA tools, there are other support tools for design database manage-
ment, debugging, and analysis tools. The minimum set of tools required to design a
SoC are HDL simulators, LINT checkers, synthesis tools, static timing analyzers,
sign-off tools, and sometimes hardware-software co-simulators, FPGA validation
setup and modelling softwares. It is also required to have a design repository man-
agement tool with revision control and bug tracking capability. The custom
design flow require extraction and modeling tools, circuit simulator layout editors,
design rule checkers, and electrical rule checkers in the design environment.

2.18 Design Center Infrastructure

SoC design is a computation-intensive process requiring high-performance systems
for design simulations, synthesis, and physical design processes. Depending on the
design complexity, process run times vary from a few minutes to multiple days dur-
ing the design cycle. This requires high-end server level workstations and design
systems with the right operating systems on which the design processes are run.
Most of the SoC designs are carried out on Linux-based high-performance com-
puter systems. The SoC design process is also a team effort where many designers
access the different sets of tools at different points of time in the design cycle. This
requires a proper network of systems with the right access rights provided to the
systems and tools to the designers. It is also important to have proper backup facili-
ties and security of the IP database as it is of high value design process. A typical
network setup for SoC design is shown in Fig. 2.4.

Fig. 2.4 Design infrastructure network topology
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2.19 Computational Servers

Computational servers (servers that perform heavy duty computations) are the
machines that run the simulations, logic, and physical synthesis of SoC designs.
These machines have configurations which are geared for the needs of tools which
actually run high-end design processes. A typical machine could have 8-16 cores
running at 2 GHz or more and working with 64GB of memory (RAM) or more.
It also required a large sized cache for holding temporary data during design transi-
tions from input to output formats. The EDA processes also generate a large amount
of data. The waveform output of a simulation could reach 100 GB or more.

2.20 Filers

A storage filer is a file server designed and configured for high-volume data storage,
backup, and archiving. Storage filers are also known as network-attached storage
(NAS) filers or storage area network (SAN) filers. They are useful when a lot of data
has to be shared across multiple users across ethernet LANs.

The best storage filers are characterized by around-the-clock availability, scal-
ability, expandability, and ease of management. They typically support multiple
network protocols and have high storage capacity. Many of them support storage
redundancy, high throughput, security features, and connectivity to a variety of
backup device types and configurations.

2.21 Workstations

Workstations are high-performance systems with good graphics capabilities, large
storage, and powerful multiple processors that are used by VLSI designers. As per-
sonal laptops come with these capabilities, designers use high-performance laptops
for most of the design phases. Workstations are used for final layout editing for fix-
ing design rule checks and other guideline violations during physical design verifi-
cation. The major considerations for choosing the workstations are the EDA tool
requirements and design complexity.

2.22 Backup Servers

A backup server is a type of server that enables the backup of data, files, applica-
tions, and/or databases on a specialized in-house or remote server. It combines hard-
ware and software technologies that provide backup storage and retrieval services to
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connected computers, servers, or related devices. A backup server is generally
implemented in an enterprise IT environment where computing systems across an
organization are connected by a network to one or more backup servers. A backup
server consists of a standard hardware server with substantial storage capacity,
mostly with redundant storage drives, and a purpose-built backup server applica-
tion. The backup schedule for each computer may be installed with a client utility
application or configured within the host operating system (OS). At the scheduled
time, the host connects with the backup server to initiate the data backup process.
The backup may be retrieved or recovered in the event of data loss, data corruption,
or a disaster. In the context of a hosting or cloud service provider, a backup server
is remotely connected through the Internet on a Web interface or through vendor
application programming interfaces (API).

2.23 Source Control Server

Important component in the design center infrastructure is source control server
which helps to manage the revisions of the source code developed as the design
database. It is also called revision control, or version control server. This is the main
server which hosts the design database and its modifications, and the logs of changes
made by design owners and their details like time of change, from which login
details and over time of design. Changes to documents or source code are identified
by the revision numbers or tags. The corresponding database with the tag can be
retrieved if required at any point of time. This enables tracking of the changes in the
database from the initial version or revision till the final version. This also helps in
the release mechanism to transfer the database from one group to another in a multi-
team environment consisting of a design team, verification team, synthesis team,
and physical design team. These systems and the software support database tagging,
merging, backing off the changes, etc., but the operation on the database will be
recorded and hence provide traceability.

2.24 Firewalls

Firewalls are hardware or software systems which prevent unauthorized access
to the repository server or source control server. It is very important to have the con-
trol mechanisms to access systems where SoC design databases are stored and
processed.
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2.25 Resource Planning

Good design is possible by the great designers. Designers with the right skill set and
expertise can only succeed in designing high-quality SoCs first time. Design teams
working on complex SoC designs require different skill sets depending on their
roles. System architects must have complete system level knowledge, different
algorithms and be able to interpret standard specifications. In addition, they must
also understand clocking strategies, low-power consumption concepts, processor
architectures, bus structures, memory organization, and their effect on the perfor-
mance. They must have good understanding of modelling techniques and have a
working knowledge of design and verification requirements. Front-end or logic
designers must be good at the fundamentals of logic design, concepts of synthesiz-
ability, HDL programming, timing concepts, and design flows be aware of the rel-
evant EDA tools. For good SoC design, it is essential to have a good mix of designers,
verification engineers, implementation engineers, tools experts, network support
teams, and physical design teams. Also, in the design team, it is required to have
expert designers in digital and analog circuits, with good protocol understanding
depending on the SoC requirements.

2.26 SoC Design Flow

The SoC design flow involves multiple parallel design flows adopted for different
design subsystems. Complete subsystems are integrated into one SoC design either
at the logic, synthesis, or physical design stage. Finally, the design database is taped
out as a single SoC design for fabrication after complete verification and sign-off.
The following sections explain different design flows adopted for different types of
designs, such as processor cores or subsystems, digital subsystem cores, analog/RF
cores, or memory controllers.

2.26.1 SoC Chip High-Level Design Methodology

Since the last six decades, the design methodologies have evolved so much that the
focus is shifted to system designs from circuit designs in VLSI technology. VLSI
design flow has become a small part of the entire system design, and the approach
to system development has become more of an integration of many of the functional
blocks in complex systems. System design is a set of subsystem design flows exe-
cuted in parallel and integrated at various stages. Major design and development
flows are listed below:

e Digital SoC core development flow.
e Processor subsystem design flow.
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e SoC physical design flow.

* Software development flow.

* EVM/SW development platform design flow.
* Product integration flow.

2.26.2 Digital SoC Core Development Flow

Digital SoC core development flow is standard ASIC design flow or standard cell
design flow. The digital SoC core of the SoC is used to design a critical part of the
system which is the main differentiator in an application. The automated standard
cell-based design flow is shown in Fig. 2.5.

The functional specification is defined by the critical block around which the
overall system on chip is planned. The standard cell design flow is used if this block
is a fully digital logic core. This block is functionally partitioned into sub-blocks,
and each sub-block is defined in detail. This is called a design document or micro-
architecture design. This can be at the module/submodule or chip top level depend-
ing on the complexity. The design details of any submodule or module include the
functional description, internal block diagram, interface signal description, their
timing diagrams, and internal state machine details, if any. The design document
specifies some special features and scenarios which are critical to the functionality
that needs to be verified. This information is typically used as a requirement to cre-
ate special functionality or capability in the test bench to verify the design scenarios.
For example, in the design of a circular buffer of 1 K locations, when the data is
continuously getting written and read out, it is not normal to get the buffer in full
condition unless the read is stalled. This is the design corner in this context. It means
that it is required to stop reading the buffer to see if the buffer is getting full and test
if further data written is properly getting written to the start of the buffer as it is
circular without losing the last data being written. Figure 2.6 illustrates the design
corner condition of the circular buffer.

As per the microarchitecture, the module/block or chip core is behaviorally
modelled using hardware description languages like SystemVerilog and VHDL.
SystemVerilog has now become the de facto hardware description language for chip
design. This is the RTL design stage. Here, the functional block is designed using
register transfer language (RTL) using HDL. RTL design must comply with design
guidelines to be able to accept it for further design processes like synthesis, which
is a critical design step in the SoC design flow. The HDL modelled design is verified
for the correctness of its functionality by simulations using the test bench using
simulators. Simulators are software tools that support application of test vectors and
capture the responses of the design under test and generate graphical signal wave-
forms for designer to analyze and decide for correct behavior. Simulators are of two
types: cycle-based and event-based simulators. Most commonly, for digital design,
cycle-based simulators are used. The RTL design is then synthesized with proper
design constraints. Design constraints are the designer’s requirements with clock
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details, input and output delays, and instructions to use specific logic synthesis
instructions that are used by the synthesis tool. It contains tools to use standard logic
cells in the technology cell library to interconnect them in a particular way to meet
certain area, timing, and power goals of the design. Synthesis is the process which
reads the HDL behavioral modules and converts it to gate level design abstractions
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called design netlist. Netlist representation of a design is a set of standard gates/
cells/flip-flops interconnected to realize a particular function described in HDL
model of the RTL design. This is done using synthesis tool. During the process of
synthesis, the D flip-flops inferred in the design netlist are replaced by the scan flops
for the design for testability (DFT) process. DFT is the process of ensuring that the
module failures resulting from the fabrication process are traceable and identifiable.
The design is further modified by the DFT tool for additional test structures for
embedded memories, D flip-flops, and input-output pads. More about these pro-
cesses are dealt with in detail in further chapters. A final design netlist is then
released to the physical design flow, which is normally referred to as backend flow.
Physical design flow converts the design netlist to the design layout.

The floor plan is the first step for the physical design, which is the placement
of the submodules and all the design elements in the design netlist. The 10 pad
placements, power requirements, on-chip memories, macros, and the interconnect
ability of the submodules within placement and routing (PR) boundaries are
decided in this step. By process, floor plan in the physical design tool is the pro-
cess of creating boxes which will house the submodules, memory macros, and
standard cells on the silicon real estate. The floor plan is followed by the actual
placement of the modules. Once, all the functional blocks/modules are placed,
they are interconnected by a process called routing. Before this process, the power
is distributed to all cells in the placed design and clock tree synthesis (CTS) is
done. CTS ensures the clock is fed to all the timing elements in the design appro-
priately. Routing is a two-step process called global routing, and detailed routing.
Global routing is the coarse routing where channels are created for routing which
shows up the congestion if any, which is to be corrected by proper placement
adjustments following which detailed routing is done. Every physical design flow
is verified by extracting the netlist from the processed database and comparing it
with the synthesized netlist which is the input to the physical design flow by a
process called logical equivalence checks (LEC). Physical design is verified for
signal integrity, [cross talk], antenna effects, and IR drop. Static timing analysis
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(STA) is done at every step of transformation of the design during physical design
to ensure the timing goal is met. Once the physical design has passed all the veri-
fication goals, the file can be written out as a library file and the GDS II file for-
mats. The library (lib) file of the design is written out if it must be integrated
further with other design submodules for SoC design. As shown in Fig. 2.7, there
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is a parallel flow of activities during each phase of the design for different cores,
like design verification by simulations, static timing analysis, DFT simulations,
logic equivalence checks, and physical design verification, which must be com-
pleted satisfactorily before the design is taken up for further integration into
the SoC at suitable design milestones.

2.26.3 Processor Subsystem Core Design

Embedded processors are an integral part of any system on chip design. In com-
plex SoCs, there can be hundreds of processor cores performing general-purpose
control functions and a number of special signal processing cores. Typically, pro-
cessor subsystem cores are licenced or bought on royalty terms as soft or hard IP
cores, unless the design center is in processor design. To ease the process of inte-
gration into different system architectures, a lot of flexibility on the processor
cores is offered in terms of configurations. It is essential to arrive at the right set
of configurations of the processor core to integrate into the SoC design. A typical
processor subsystem core design flow is shown in Fig. 2.7. Processor subsystem
core design in SoC design starts with assessing the processing power required for
the system. This is expressed in MIPS (million instructions per second). Once the
MIPS requirement is derived, available embedded processors from different ven-
dors are assessed against this requirement, and options are compared to select the
best suited processor and subsystem core based on other parameters. The param-
eters considered are the area consumed by the processor, customization needs
while integrating, power consumed, software development platform, RTOS avail-
ability on the processor, and finally the commercial aspects like cost, loyalty
terms, etc. Once the processor is chosen, supporting peripherals like Level 1 and
Level 2 cache options, boot options, debug interface protocols, network intercon-
nect supports, etc. are decided based on the SoC architecture. Selection of the
processor configuration is based on modelling the typical application scenarios
and, to an extent the designer’s past integration experience. Major parameters in
the processor configuration include address/data bus width, instruction/data cache
sizes, peripheral subsystems like DMA controller, bus modules like AHB/APB
bus master/slave, number of timers required, and number of interrupt lines, to
name a few. The processor subsystem core is generated with the right configura-
tion parameters and is verified in the standard verification environment provided
by the vendors for confirming the claims on the performance and processing capa-
bilities. Processor subsystem core can be soft core or hard core, which is inter-
faced with other blocks of SoC and the design process is continued. If the core is
soft core, it is interfaced as a logic block, and if it is hard core, it is integrated
during physical SoC design.
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2.26.4 SoC Integrated Design Flow

The SoC design flow differs from the standard VLSI design flow only in integration
flow. It can be considered a hybrid design flow where many core designs are in dif-
ferent stages of design abstraction get integrated. The design blocks/macros and IP
cores to be integrated are made available in different types: soft core (RTL source
code) or netlist, hard macro as liberty (LIB) file, or layout (GDS II) file. Analog/RF
core design follows full-custom design flow, and processor subsystem core design
is carried out using standard cell-based ASIC design flow to achieve high perfor-
mance. These cores are integrated at different levels during a SoC design phase
depending on the abstraction and the type of design. Figure 2.8 shows possible
integration stages in SoC design.

At any design stage, an additional core gets integrated into SoC design database,
and appropriate integrated verification has to be done to ensure that integrated
design works as intended and design goals are met. SoC design continues after the
integration of IP cores, with appropriate design constraint modifications and updated
integrated verification on the revised design. The integrated design flow with the IP
core integration is shown in Fig. 2.9.

2.27 EVM Design Development Flow

Simplest SoC validation platform is the circuit board with the SoC and all associated
discrete components and modules which are used to validate the SoC for the specific
features and the performance in the actual application scenario. EVM development
flow begins as soon as the decision on the package is made, which typically is taken
when the power-area number of IOs for the SoC is frozen. And in complex SoCs,
which include multiple dies, the package design takes substantial efforts and time
which need to be considered before the EVM development. The EVM design flow is
shown in Fig. 2.10.

2.28 Software Development Flow

In earlier days, software development used to start after the hardware platform is
available with the chip designed and fabricated. But with the availability of develop-
ment boards with processor subsystems and high-density FPGAs, it is possible to
develop the entire system on them and make them available for software teams to
develop the SoC software much ahead of time during the SoC design cycle. Also,



32

Functional Specification

Chip Micro
Architechure

Module Integration

Floor Planning

Place and Route

Physical design
Verification

Further Integration or
Tapeout

Fig. 2.8 SoC physical design flow

e

oem—

=

2 System on Chip (SoC) Design

Softcore I[P in HDL
model

Softcore IP in netlist

Hard Core in lib

Hard Core in Layout



2.28 Software Development Flow 33
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Fig. 2.9 SoC design flow with integration of cores at different levels of abstractions

the companies which provide processor cores provide development boards with
processors and additional FPGAs for user logic design. They are used to validate the
chip design by porting the design blocks into the FPGA. The development boards
are used for software development in parallel to chip development. This helps to
validate many of the design assumptions such as function latencies, interfaces,
interrupt/DMA mechanism, etc. during SoC design. Intelligent algorithms are
developed and validated in firmware to determine the configurations in real-time
situations of the SoCs. Many times, selection of the right algorithm among many
alternatives can prove to be the unique selling proposition of the SoC. The embed-
ded firmware development flow is shown in Fig. 2.11.
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2.29 Product Integration Flow

Once the SoC design is validated on the EVM-based development platform, typi-
cally application notes are generated for SoC usage in various application scenarios
for product design.
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Chapter 3
SoC Constituents

3.1 SoC Constituents

A typical SoC consists of one or many processors and processor subsystems, on-
chip memories, peripheral subsystems, standard communication cores, and periph-
eral device and memory controllers. An on-chip processor subsystem comprises
single or multiple processor cores and standard peripheral bus bridges and inter-
faces. An on-chip memory consists of SRAMs or register arrays depending on the
size. Major constituents of SoCs are application-specific functional blocks, protocol
blocks, data processing blocks, and physical layer functions in communication pro-
cessors or high-efficiency signal processing cores in multimedia SoCs; or a rule-
based switching function in router SoCs. On-chip communication cores support
communication with peer devices and make them interoperable. Some of the most
commonly used communication cores are USB, UART, 12C, and SPI. Present-day
SoCs also consist of high-performance mixed signal (analog and digital signal) pro-
cessing blocks like ADCs/DACs, signal conditioning circuits, on-chip sensing func-
tions for temperature and activity sensing, and functional blocks with radio
frequency (RF) transceiver functions. Extra glue logic is added, which helps in
housekeeping the data for processing or communication transfers, communication
interfaces, and accelerators to support embedded firmware. Application-specific
protocol functions and sensor/actuator interfaces with signal conditioning circuits
and other control path modules like clock-reset circuitry, debug logic, DMAC,
memory controllers, interrupt controllers, bus conversion modules, network inter-
connect modules, and DFT logic are typically found in SoCs.
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38 3 SoC Constituents
3.1.1 Embedded Processor Subsystem for System on Chip

Typically, the main functional core in most of the SoCs, and embedded processors
is the RISC processor which can be single or multiple instances depending on the
processing power required for a particular application. As the technology allows
integration of more and more cores on a chip, the SoC is being used for running
hundreds of applications hence there are systems on chips as complex as embedding
tens to hundreds of processors and peripherals on a chip. SoCs used for cloud server
systems are examples of such complex systems. Embedded processors can be RISC
processors or digital signal processors (DSP) or can be a combination of both in
many numbers depending on the target applications. The ARM Cortex M4 embed-
ded processor subsystem is one of the most popular processor subsystem cores in
SoCs, are shown in Fig. 3.1a. As it can be seen, it consists of processor core, inter-
rupt controllers, digital signal processing (DSP) core, floating point unit (FPU),
memory protection unit, AMBA high-performance bus (AHB) lite interface, and a
few of the debug interfaces like JTAG and serial wire.

Die photo of ARM 610 microcontroller SoC is shown in Fig. 3.1b. One can visu-
alize the complexity and the density of a microcontroller SoC.

Choice of Embedded Processors for SoC
Selection of the on-chip processor and its subsystem is purely based on the process-

ing needs of the system. Processing power is determined based on the application.
The functionality is defined and classified based on the criticality of the system.

a
(arm Cortex-M4

Vector interrupt Wake Up interrupt
controller controller

Central processing unit Arm v7-M

Memory protection B ] Gt
unit ) | )
IT™ Data [ |
AHB trace watchpoint ol
Lite ETM Breakpoint Serial
trace unit wire

Fig. 3.1 (a) ARM Cortex M4 block diagram. (b) Die shot of ARM610 microprocessor. (Source:
ARM 610 microprocessor; Courtesy: GEC Plessey Semiconductors)
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Fig. 3.1 (continued)

With the hardware-software partitioning of the functions, processing requirement

on

the chip are derived. Though there is no formal process of deriving the process-

ing requirements, the typical activities followed to arrive at the requirements are the
following:

List the functions to be executed in the software after hardware-software parti-
tioning for SoC.

Classify them as functions which can be executed by general-purpose instruc-
tions and signal processing instructions (meaning the functions requiring math
operations such as multiplication, division, filtering, etc.). General-purpose func-
tions are mapped to RISC processors and signal processing functions to digital
signal processors.

Embedded General-Purpose RISC Processors

Classify the functions into real-time and multicycle operations.

List all the processes in the functions in the multicycled operations.

Map the processes of the functions to load, operate, and store instructions of the
general-purpose RISC processors.

Add all the instructions required to execute all the operations and multiply them
with the average number of cycles per instructions, from which derive the num-
ber of instruction per second. This is the processing required for the operation.
Many times, it will not be straightforward as it is said here. In such cases, such
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functions, programs, and algorithms are modeled on the available processor
development platforms to assess the number of read/write instructions and arith-
metic/logic instructions required for the operations.

* Map the requirement to available processor datasheet parameters and compare
them against each other.

e Choose the best suited processor core.
The selection process is shown in Fig. 3.2.

Fig. 3.2 Selection process
of embedded processor for

the SoC

List all the sw
functions
¥

Classify the
functions to GP or
compute functions

Classify the GP to time critical
or multicycle functions

Y

Time critical

N ) i
function EI
_Load.f store ISR function

instructions

Derive total number
of instructions -
required

Y

x
T

Derive Instructions required Per
Sec (IPS) and Million IPS

v

Caollect MIPS offered by GP

processor - I

l Choose alternate GP processor

4

Mo

Y

Select GP processor

v




3.1 SoC Constituents 41

Case Study 3.1 To arrive at the MIPS requirement for packet processing in Ethernet
packet of size 256 bytes

Structure of an Ethernet frame is shown in Fig. 3.3.

As shown in Fig. 3.3, a typical Ethernet frame contain a preamble, start frame
delimiter (SFD), MAC header with destination and source addresses, Ethernet
frame type, and the user data followed by frame check sequence (FCS). The two
Ethernet frames are separated by interframe gap (IFG) which is the known idle pat-
tern. To find the MIPS of the processor which has to process such frames, it is
essential to know the frame structure. Please note that the frame size can be of any
size between 64 bytes and 1864 bytes. Ethernet also supports jumbo frames of
larger than size of 1864 bytes. For all the size of the frames, it is essential to derive
the data throughput with technology overhead. All assumptions are considered
while arriving at MIPS requirement of the processor is in Table 3.1.

The user data throughput is defined as how much of user data (payload) can be
transmitted excluding technology overheads like preamble, header, and FCS
per second.

Number of devices the system supports: 128.

Part of frame to be read to process it: 40 bytes (header part of the packet only).

Number of reads/writes required for processing 40 bytes: 10 (depends on proces-

sor data bus width).

Number of reads to be done on configuration and device detection: 128.

Number of compare operation to be done to detect the device: 128.

Number of writes: 5.

Total processing per frame: 10 + 128 + 128 + 5 = 271 operations.

Number of frames per second: transmit/receive rate/(frame size in bytes*8).

= 700,000,000/(128*8) = 683593.75.

Ethernet Packet1| IFG | Ethernet Packet2 | IFG | — — — — — — — — — — — — — Ethernet Packet 2

256 Bytes

4
vy

Destination MAC Source MAC

Freambie S0 address address

Ethertype Payload |- — — 4 FCS

Fig. 3.3 Ethernet frame format

Table 3.1 Assumptions regarding Ethernet frame transmission

Frame part Value Unit Remarks

Preamble 2 uS Time to transmit
Physical layer header 582 nSec

Guard interval 36.4 nSec

Transmit/receive rate 700,000,000 Bits per sec Rate of transmission
MAC header 40 Bytes Field size
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Number of operations needed to process frames of size 128 bytes per second:

185253906.

Number of millions of operations (MIPS) needed per second:

185253906/1000000 = 185.26MIPS rounded to 186.

Some amount of MIPS required to manage the connected devices and link man-
agement which can be assumed as 15% which will be 0.15 *frame processing MIPS.

Total MIPS required: 193 + 0.15%186 = 213.9 MIPS rounded to 214.

But note that fixed size frame is considered for computation and in practice, the
Ethernet frame can be of any size between 64 to 1836 bytes, and it is customary to
assume 40% more MIPS to accommodate the random frame sizes and other
overheads.

MIPS required for this SoC = 214 + 0.4*%214 = 299.6 rounded to 300. Any
embedded processor with more than 300 MIPS will be good enough to process
single port Ethernet frame processing SoC. However, if the SoC has to process mul-
tiple ports, then the MIPS required has to be multiplied by the number of ports.

The intention of this case study is to give the rationale behind choosing a proces-
sor based on MIPS and not the accurate one. It is to be noted that the processor
selection as shown in Fig. 3.2 is based on the technical feasibility of SoC. Many
times, the choice of processor depends on other factors like the customization
required to integrate, power consumption, area of the core, etc. Other factors affect-
ing the processor decision are development support for embedded software and the
support software such as compilers, and operating systems (RTOS). Sometimes, it
can become a business decision. The processor IPs are sourced with licence and call
for royalties when SoCs are manufactured in large quantities. Processor cores are
also available as hard micros for SoC integration which reduces design time drasti-
cally. Processor cores such as RISC V are available free of cost for SoC designs,
which promote the democratisation of SoC development.

3.1.2 DSP Processors

Use of SoCs in Internet of things (IOT) and multimedia applications necessitates
the integration of many real-time signal processing functions on VLSI chips. An
example is a multisensor SoC where the signal conditioning feature samples a large
number of real-time physical parameters periodically, averages them over time, and
digitally filters the noise to derive meaningful data. Most of the communication
protocols SoC features demand digital signal processing for baseband level data
processing. Also, there are exclusive digital signal processor-based SoCs which are
optimised in terms of area and power to be able to integrate on the chip for these
applications. In most applications, the SoCs use DSP processors for external inter-
face to samples and signal/data front-end processing to derive meaningful
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information, which are further processed by RISC processors on chip for data inter-
pretation and analysis. This can be seen in all multimedia and communication SoCs.

3.2 Issues of Hw-Sw Co-Design

The complexity of SoC design increases considerably with the requirement
of hw-sw co-design to get time to market advantage. The in-system programming
(ISP) adopted for software development during SoC design poses a lot of challenges
for achieving high performance. The ISP is primarily used for data computing and
control systems. The need for application-specific, retargetable compilers and
embedded assembly level programming makes it more complex. It is necessary to
decide on the need for software accelerators and hardware accelerators/coproces-
sors at the early stages so that targeted high system performance can be met. Most
of the time, the software development time exceeds the hardware integration time
for embedded processors in SoC development. Sometimes, in safety-critical appli-
cations, it is necessary to plug in safety functions in a chip which are of more impor-
tance than performance. In such cases, computer-aided compilers are generated and
used. Decisions like this, require system level knowledge, experience to foresee the
issues and add work around plug-ins in the SoC.

3.2.1 Processor Subsystems

The processing engine is the heart of the system but for it to run an application, just
the processor alone is not enough; it needs many peripherals. Some examples of
peripherals are on-chip flash modules for booting; internal SRAM memories, for
storing the data and program codes; cache, or scratchpads; UART/JTAG for debug-
ging program execution; DMAGCs; interrupt controllers; etc. Many SoC applications
need large expandable memories which require robust high-density memory con-
trollers. All these togather constitute the processor subsystems. A typical processor
subsystem used in IOT applications is shown in Fig. 3.4. The processor subsystem
in a SoC includes a processor core interfaced with peripherals which are either pro-
prietary or generic. The processor core is interfaced to other intellectual property
(IP) cores and standard functional blocks such as DMA, memory controller, and
radio controller blocks on a standard high-performance buses such as the AHB
expansion port, and peripheral subsystems such as the ADC, DAC, and I2C inter-
faced through low-performance peripheral bus such as APB interface, on-chip and
off-chip memories interfaced to a memory controller, embedded flash connected to
flash controller, and flash cache controller.
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3.2.2  Processor Configuration Tools

Considering the complexity of SoC designs, the processor vendors offer processor
system configurable tools to decide on the suitable configurations of processor
cores. The processor configuration tool is used to generate various software devel-
opment platforms and custom tool kit for the selected processor subsystem. This
helps to model on-chip processors of desired configurations and automatically
generate the corresponding toolkits for the processor hardware/software co-
design. This also generates the test setup for subsystem verification and co-
verification environments, including the instruction set simulator. Embedding
a processor subsystem requires designers to work in two fields: hardware develop-
ment of the processor architecture and software toolchain development for the
compiler, assembler, linker, simulator, and debugger. Both use the software simu-
lator to profile data to identify hotspots and bottlenecks in the instruction set,
analyze the performance of an algorithm, and determine the required size of mem-
ory and registers. In addition to architecture exploration, the tools provide ways to
generate hardware design files, including RTL files, and other physical design files
and system level descriptions using modelling languages like MATLAB or System
C. The flow in Fig. 3.5 shows the choice of parameters in a typical processor sub-
system configuration tool.



3.2 Issues of Hw-Sw Co-Design 45

Configure paramteres for set of
target architecture

l
Y

Instruction set descriptions

v

Moduler tools set generators

* Change config Parameters
\J
RTL Model | A
| C-Compiler I
Synth/STA scripts I
Assembler | il i
Linker I Design constrints I

I Simulator | I Estimate Area,power & Timing |

l

esign goals me

Fig. 3.5 Processor configuration flow

3.2.3 Processor Development Boards

To reduce the risk involved in fabricating the complex SoCs, the designs are first
validated on the development platforms that have hard processor chips equivalent to
the processor core used in them. The development board has a high-density field-
programmable gate array (FPGA) to which the SoC design is ported. This helps in
validating the SoC modules and serves as a development platform for system soft-
ware design. Processor core developers also provide development boards based on
processor chips or as hard macros in FPGA. The development board is used for
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evaluating the SoC design performance, like speed, power, accuracy, and cost.
Typically, software drivers for SoC interface blocks are developed and validated on
these development boards. It is used as a validation platform for custom IPs on
FPGA, which must work in tandem with the processor. A few examples are Juno and
Neoverse development boards from ARM.

3.3 Embedded Memories

Embedded memories are an inevitable part of SoC design. In fact, around 40 to 60%
of the SoC area is constituted by on-chip memories. They are either SRAM blocks
or register arrays. Memories are used to store data, or system configurations, or
standard reference data in the systems. On-chip SRAMs are available for SoC inte-
gration as memory arrays of configurable sizes with different rows and columns.
There are companies that specialize in high-quality, high-performance memories of
different types. These are silicon proven and are offered as a macro library with all
design files for SoC integration. Memory macros also come with built-in self-test
(BIST) circuitry and repair functions which help improve testability and high chip
yield. There are SRAM cells with a single transistors, which are used in high-density
SoCs. SRAM cell which is widely used has a six-transistors (Six T). Typical SRAM
cell with a six transistor (Six T) structure is shown in Fig. 3.6.

3.3.1 Types of Memories

Types of memories used in SoC designs are SRAMs, ROMs, and EPROMs, depend-
ing on the requirement. The EPROMs are electrically programmable with a special
device programmer. Typically, the small boot vector code for processor subsystem
or the reset vector can be loaded into such EPROMs as a part of power-on sequence.

Fig. 3.6 6 T SRAM cell X WL
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ROM has to be loaded with the initialization data from the fabrication facility itself
during automatic test screening. So, when the SoC design contains ROM, the vector
file must be submitted to the fabrication/test house. Memory vendors offer memo-
ries as macros of different types that are highly optimized for size, power, and
access times that are silicon proven. Memory macros are generated as register files
of register arrays, single-port SRAMs (SPSRAM), dual-port SRAMs (DPSRAM),
and SRAMs/DPRAMs. There are special memory macros with redundant stor-
age that are called repairable memories. The redundant part of memory macros is
generally not used unless some of the memory cells have resulted in faulty ones.
Special memory macros also come with error checking code (ECC) logic which is
used as repairable memories. ECC RAM monitors data as it is processed by the
system, using a method known as parity checking, and if there are errors, they iden-
tify and correct them.

3.3.2 Choice of Memories

On-chip RAMs have different types of faults than those in logic functions. To avoid
them, special care has to be taken during chip design at the cost of increased silicon
area. Some of the most commonly used special design techniques are built-in self-
test (BIST) logic, repairable logic, etc. The choice of the type of on-chip memory is
based on the criticality of the memory content, access timing requirements, and
overheads affordable on silicon real estate.

3.3.3 Memory Compiler and Compiled Memories

As mentioned earlier, the on-chip memories for SoCs, are available as macros of
different types. Memory macros are proven cores in a process technology. Memory
macros are optimized for PPA to suit SoC applications. They are size and structur-
ally organised in terms of number of rows and columns (R x W) and placement
orientation on the layout configurable. They are configured by a tool called memory
compiler. These compilers generate design files for a chosen macro configuration.
Based on user preference, the memory compiler can write out different design files
required for SoC integration and design. The macro design files include front-end
(HDL) models, test benches, test scenarios, and physical design files. Memory com-
pilers also generate special memory macros such as repairable memories and
those with advanced power management modes, such as light sleep, deep sleep, and
shut down. They can generate macros with high-speed sense amplifiers, fast clock-
ing, and fast bit line recovery to achieve the high speed required by today’s high-
performance applications. In summary, the memory compiler:
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1. Generates memory instances that include all the necessary logic to facilitate
at-speed built-in self-test (BIST), ECC, and redundancy for repair for user
configuration.

2. Generates memory models with different aspect ratios, test benches, liberty
files, GDS II, and LEF plus many other views in one concise database.

3. Generates high-performance memories in terms of access times or high yield
factors by the selection of process-sigma characterization and read-write mar-
gin settings.

4. Automates the process of generating macro design files for SoC design integra-
tion using standard EDA tools.

5. Has user-friendly graphical user interface (GUI) to generate large number of
memory macros in batch mode with fast run time.

6. Generates the fully encrypted and protected physical design files as these are

characterized for set performance.

Generates PDF datasheets corresponding to the macros generated.

Operates independently from EDA tools.

Generates user design guides with training and tutorials for SoC integration.

. Generates real-time instance-based characterization.

_
S 0 o

Typical memory compiler architecture is shown in Fig. 3.7.
Intel’s 22 nm technology SRAM memory die is shown in Fig. 3.8.

Mmeory User Interface
Multi Aspect ration instance
Open Access database generataion
Encrypticn
User PVT for charecterisation |
Mmeory Time Real time memory
1 compiler Control
Data sheel data generation
v * License
control
Time dajabaﬂ [: Verileg j
] !

and documentation

'

Physical
database

!

‘ Compiler Fetaure control |

EDA views

Fig. 3.7 Memory compiler architecture
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Fig. 3.8 Intel’s 22 nm SRAM memory wafer. (Source: SemiconDr blog; Photo courtesy: Intel)

3.4 Protocol Blocks

System-specific functions are designed by a single or set of functional blocks
that execute tasks in proper coordination in a well-coordinated manner. It can be
a subsystem in the SoC that executes a protocol function. A protocol is a series of
processes, involving two or more functional units in a system, designed to accom-
plish a function. The typical characteristics of the protocol are the following:

1. All blocks are part of the protocol and execute their identified predetermined
function.

2. All blocks coordinate and perform in tandem to execute a function.

3. Protocol function must be unambiguous.

4. It must be complete with all conditions clearly defined.

Protocol can be technology defined, or application dependent, or process depen-
dent. Examples of technology-dependent protocols are the Bluetooth protocol,
WLAN protocol, and Ethernet protocol as defined by the respective technology
standards. These standards are defined by professional bodies like ITU-T, IEEE,
etc., and are accepted widely by the developer communities and help in interoper-
ability. An example of process-dependent protocol is the cryptographic protocol.
This protocol is used to avoid hacking or data misuse. Some of the protocol exam-
ples are shown in Fig. 3.9. For easy understanding and compliance, protocols are
represented by a state diagram 3.9a message sequence diagram 3.9b, and a dataflow
diagram 3.9c.

The protocol block is designed to be intelligent enough to know the configura-
tions and respond to the contexts defined in standard protocols. Figure 3.10 shows
an example of the IEEE 802.3 standard-based 10/100Mbps media-independent
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Fig. 3.9 (a—c) Protocol examples
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Fig. 3.10 IEEE802.3-based 10/100Mbps MII protocol. (Courtesy: IEEE)

interface (MII) protocol as applied in the OSI reference model (detailed in the latter

part of the chapter).

In Fig. 3.10, the protocol block includes a physical layer design function. This
includes managing transmission media such as air in wireless and wires in wired
technologies. The protocol functional block takes care of signal level and strength,
noise filtering, configuring the air/connector interface, and necessary signal
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processing. The physical medium interface supports signal processing with physical
layer coding sublayer (PCS) functions, such as encoding/decoding, scrambler/
descrambler, and 3B/4B code converter. The physical layer block is interfaced
to the media access controller (MAC), which is the data link controller block and
logic link control functional block in the system. The details of the functionality are
out of the scope of the book.

3.5 Mixed Signal Blocks

Designers can now integrate mixed mode signal processing blocks in SoC, thanks
to advancement in design automation tools. The SoC design methodology permits
interfacing analog and digital signal processing blocks, thereby reducing the bill of
materials (BOM) of the product. Examples of the mixed mode blocks are data con-
verters, transceivers, etc. There are two types of data converters: analog-to-digital
converters (ADCs) and digital-to-analog converters (DACs). These enable you to
connect the SoC to sense, process, and monitor physical parameters using sensors
and transducers, like such as microphones, speakers, cameras, and accelerometers.
The mixed signal mode blocks are interfaced as per the technology standards like
Wi-Fi, Bluetooth, MoCA, PLL, or proprietary interfaces using some of the transduc-
ers: temperature, accelerometers, and pressure and sound sensors as required by the
applications. An example of data converter is shown in Fig. 3.11. There are design
companies that exclusively design these mixed signal IP cores and offer them for
SoC integration. Analog and mixed signal design methodologies are more complex
and involve more manual processes compared to digital design methodologies.

3.6 Radio Frequency (RF) Control Blocks

Advancement in process technologies has enabled the realization of intermediate
and radio frequency signal processing on chip. Signal processing functions like the
modulation and demodulation, filtering at intermediate frequencies, and realization

1.
- ADC [y I
- DAC O Oy |
Analog domain i Digital domain

Fig. 3.11 Data converter for SoC integration
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of antenna structures on chip are possible to realize in a CMOS-compatible fabrica-
tion process called the RF-CMOS process. Modern communication technology
operates with high data rates of the order of gigabits per second. These adopt com-
plex signal modulation schemes applied to data transmitted on high bandwidth of the
order of 80 MHz, communication channels. This has resulted from aggregation of
channels, complex multi-antenna array architectures, and interchannel noise cancel-
lation techniques. From the baseband perspective, the multi-antenna results in mul-
tiple data streams processed, requiring multi-analog interface modules. A typical
WLAN 802.11 ac SoC implementation uses more than two data stream transmis-
sions with antenna array configurations. Hence, in most high-performance commu-
nication processors, TV processing SoCs, IF, and RF transceivers are inevitable.

3.7 Analog Blocks

Typically, signal conditioning is an analog function. It is carried out in analog blocks
which are integrated into the SoC as macro. They are developed or bought as third-
party intellectual property macros for integration into SoC during the physical
design stage. Analog blocks are designed using custom layouts which are hand-
crafted and validated mostly by test chips. One such example is a phase-locked loop
(PLL) block, which is used to generate fixed and variable frequency clocks on
a chip. An example of PLL is shown in Fig. 3.12.

In the full-custom design flow, design is done by drawing the schematic circuit
using circuit elements like transistors, capacitors, resistors, and inductors, which are
interconnected using the schematic editor tool. Most EDA tools come with sche-
matic editors for design input. Circuit simulation for analog blocks is done at the
transistor level using circuit simulator tool such as Simulation Program with
Integrated circuit Emphasis (SPICE). The standard cell library cells for automatic
cell-based design flow are designed using a custom design flow. This design meth-
odology is most commonly used for digital designs.

Loop

VCO

Feedback

Fig. 3.12 PLL block diagram
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3.8 Third-Party IP Cores

It is quite common that apart from specialized SoC constituents explained, it is
necessary that it contains standard interface IC cores like UART, USB and SPI to
expand and interface with external ICs to enhance the capability. These interface
cores are called intellectual property (IP) cores and are bought from third-party
vendors, on licence and royalty terms. SoC IP cores are pre-verified and pre-
validated functional blocks ready to be integrated into SoC. The IP cores are pur-
chased as soft cores or hard cores depending on the target technology and
customization required for integration. Soft IP cores come with design files, test
benches and synthesis setups with design constraints with which they have to be
synthesized. When IPs are bought as hard macros, no customization is possible.

3.9 System Software

System software is the integral part of a system on a chip in today’s world. The
software can be classified in many ways.

3.9.1 OSI System Model

The communication system layers are classified depending on the functions they
perform and how closely they interact with either the hardware or the application
that interacts with the user. Figure 3.13 shows the most common OSI model of the
system layers for network systems as defined by the International Organization for
Standardization (ISO). The same model can be used to explain other systems on the
chip by collapsing some of the layers. System on chip designs typically identify all
time-critical functions of mostly layers one, two, and three, collapsing them for
implementation on chip in total or as an accelerator engine for firmware implemen-
tation. Fourth and above layers are implemented on general-purpose processor
or computational systems which interact with the SoC hardware.
Brief introduction of OSI model is given in this section.

Physical Layer (Layer 1)

The physical layer constitutes the physical layer signal processing functions along
with physical link control functions like signal boosting, modulation and demodula-
tion, received signal detection, carrier detection, link establishment and maintaining
functions, encoding and decoding, clock recovery functions, and detecting valid
physical layer packets and passing them onto the data link layer.
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Fig. 3.13 OSI model of system layers and their interactions

Data Link Layer (Layer 2)

Data link layer functions include peer-to-peer data transfer functions and error
detection and correction functions. It includes two sublayers: the data link layer and
logic link layer sub-functions.

Network Layer (Layer 3)

This layer includes functions of networking and routing to different nodes and inter-
faces by detecting the source and destinations and applying certain accepted rules.
Also, this layer manages the packet routing functions to different nodes and even
routers.

Transport Layer (Layer 4)

This layer is responsible for coordinating data transfer from host to system, decid-
ing the data rate, bandwidth and throughput.

Session Layer (Layer 5)

When peer-to-peer link is set up, the session has to be set up for data transfer

between the two devices. Session layer sets up the session for data transfers and
terminates it after completion.



3.10 GAMP Classification of Software 55

Presentation Layer (Layer 6)

The presentation layer represents the preparation or translation of data from appli-
cation format to network format, or from network formatting to application format
data. In other words, the layer “presents’ data for the application or the network. A
good example of this is the encryption and decryption of data for secure transmis-
sion—this happens at the presentation layer.

Application Layer (Layer 7)

Application layer is a user interface. It accepts data from the user for transmission
or further processing and communication. This layer corresponds to users.

3.10 GAMP Classification of Software

System layer classification is also done according to the definition of good auto-
mated manufacturing practise (GAMP), a technical subcommittee of International
Society for Pharmaceutical Engineering (ISPE). According to this, the hardware,
firmware, device driver, middleware software and newly added cloud are all system
layers. The software which interacts with the user is also termed “human ware”.
Figure 3.14 shows the system layers and their interactions. GAMP classification
which include risk assessment and traceability as best practise guidelines was defined
for pharmaceutical systems but is now widely used in all other domains. A brief
description of the classification layers follows.

Hardware Device Driver Firmware Middleware Software

- o

Fig. 3.14 System layers and their interactions
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3.10.1 Hardware

Hardware includes SoC and supporting peripherals, which are the main parts of the
system or the solution.

3.10.2 Device Driver

The device driver is closely related to the hardware and is used to control the hard-
ware functions. Examples of device drivers are display controllers, keypad control-
lers, interface controllers like I12C master/slave drivers, Bluetooth module drivers,
etc. It can reside in flash memory.

3.10.3 Firmware

When system is partitioned into hardware-software (hw-sw), where the software
part of the program complements and completes the function in association with the
hardware. It includes algorithms, protocol interpretations, decisions-making based
on the various events, and the state of hardware. It typically resides in ROM,
EPROM, or flash memory. Bare metal (which directly works with hardware without
an operating system) or based on real-time operating system.

3.10.4 Middleware

Middleware is a software that connects firmware or operating system and an appli-
cation software. It particularly manages complex transactions with multiple distrib-
uted application software.

3.10.5 Software

Remaining program with the user interface and an application program is called
software. It converts the messages and transactions and deciphers in a way that they
can be consumed by the user.
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3.10.6 Cloud

Cloud part of the system structures the large data generated by the system, stores,
processes, and analyzes reliably and securely for the user/users who are entitled to
access them. It is the shared resource where the user can selectively access his por-
tion of the data for consumption.

As above classifications enable the correct development of a complex system,
with advancement in chip technology, most of the system gets implemented in chip
or memory chip or processor chip or server/storage system on a chip and packaged
as a solution.

3.11 Design-Specific Blocks

Apart from the system functional blocks, design methodology and technology-
specific blocks for achieving the yield and reliability of devices are required for the
SoC. They are on-chip clock (OCC) generator block; power management block;
on-chip process, voltage, and temperature (PVT) sensors (for chip health monitor-
ing); and design for testability (DFT) logic which guarantee the reliability, safety,
and testability of the SoC.
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Chapter 4
VLSI Logic Design and HDL

4.1 SoC Design Concepts

Basic logic functions are combinational and sequential circuits, but the majority of
the SoC designs are sequential designs as it is easy to represent system functionality
by data/control path architectures. This is easily done by defining their different
states spread across time. Data path architectures of system definition can be
extended to most of the subsystems if their functionality can be classified as a finite
number of states. This requires identifying the system functionality as small logic
partitions and realizing them as fundamental logic circuits. Some of the SoC design
concepts essential for defining the functional architecture of a system are as follows:

* Logic design fundamentals.

* Synchronous sequential functional blocks.
e Speed matching.

e System state machines.

e NOC architecture.

e System modes.

e Hardware accelerators.

4.1.1 Logic Design Fundamentals

System design concepts are based essentially on logic design fundamentals. In this
section, we review the design concepts of logic design. Logic circuit functions are
classified as sequential and combinational logic. Circuits which require a clock for
its operation are called sequential logic circuits. Typically, they either store the data
for processing or involve memory. Examples of sequential circuits are timers, coun-
ters, multipliers’ register arrays, etc. Subblocks are designed using combinational
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and sequential logic using a clock as a main block control signal. Such blocks are
synchronous logic blocks. A clock signal helps to time every event in the dataflow
architecture and control the data movement during data processing. Clock is fed to
all sequential timing elements such as flip-flops and latches. These are design ele-
ments used as storage elements in the data path. Logic functions are realized using
combinational logic gates and sequential cells called standard cells. NAND, NOR,
XOR, INV, and buffer gates are combinational cells and D flip-flops and latches are
sequential cells called “standard cells”. Some of the complex cells, such as adder,
subtractor, encoder, decoder, and multiplexer, are designed using primitive gates to
form complex design elements. The design method which is used to model the
design with a dataflow architecture is mainly register transfer level (RTL) design.
Any logic design can be represented in RTL design by representing the behaviour
and structure or in terms of algorithms, which are essential components of subsys-
tem design. All designs that use the clock as the main control signal are synchro-
nous designs. All other control signals in such designs are synchronized to the main
system clock.

As previously stated, any logic function is represented as RTL design using hard-
ware description language (HDL). RTL designs are converted to design netlist by
the process called synthesis using the EDA synthesis tool. The synthesizer tool opti-
mizes the logic functions, based on the cost function which could be area or time as
desired by the designer. Logic optimization techniques involve two-level logic opti-
mization, signal reordering, logic sharing, etc.

4.1.2 System Clock and Clock Domains

A set of logic design blocks operating on a single clock is called clock domain.
Complex SoCs will have hundreds of clock inputs driving different parts of a logic
circuit and, accordingly, several clock domains. A clock is called the primary clock
if it is the output of the clock generating circuit called the clock source. A clock
source for a SoC will typically be a phase-locked loop (PLL) circuit. Clock is a
derived clock if it is generated from the primary clock by dividing or multiplying it
internally by a constant or by introducing phase delays. As there are several clock
domains in the SoC, the data signals traverse across subblocks crossing different
clock domains. The clocks in different domains can be of the same frequency and
different phases or different frequency and phases. Because most logic designs use
a clock to latch data, it is critical to take special care to generate data with generated
clock so that they are correctly latched. The generating clock is also called the launch
clock. When asynchronous signals cross clock domains, it is necessary to identify
the critical data and control signals and synchronize them to the receiving clock to
ensure that they are stable for at least one clock cycle of the receiving clock. It is
better to keep the data signal stable for multiple clock cycles of the receiving
domain. An example is illustrated in Fig. 4.1.
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Fig. 4.1 Clock domain crossover

4.1.3 Asynchronous and Synchronous Resets

System must be deterministic in terms of logic states for stability and reliable opera-
tions. To make the system deterministic, it is necessary to initialize the circuits to a
known state. This is done by a reset signal. This signal can be of a pulse, or level,
signal. A reset is an external signal, that resets all the logic states to a known default
state or pre-defined state. This signal can be asynchronous from an external switch
or synchronized to the system clock to make it a synchronous reset event.

Metastability

Badly designed circuit can get into a condition where the signals can settle to an
intermediate value between logic 0 and logic 1. These signal states are nondetermin-
istic in terms of logic 1 or 0. This is called metastable state. When this happens, the
logic circuit in the system may not return to a stable state and can get stuck in
a metastable state, leading to fatal system errors. This will happen when the proper
timing requirements of the sequential design elements are not met as required. The
timing elements such as flip-flops and latches are characterized by setup and hold
time requirements for correct operation. Two main timing requirements are setup
time and hold time. The setup time of a flip-flop is the time duration for which the
data should attain a stable logic value (1 or 0) before the active clock edge. The hold
time is the time for which data should remain stable after the active clock edge. The
data arrival time at the inputs of a flip-flop or latch must satisfy setup and hold times
for proper operation. If this is not met, the circuit can enter a metastable state and,
most of the times will not return to stable state. This is avoided by meeting the proper
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Fig. 4.2 Metastable state and the stable state of the signal

timing specifications of design elements. If the signals are asynchronous to the cap-
turing clock, a technique called double synchronization is adopted. Here, the data
inputs are synchronized with the clock by passing them through two or more flip-
flops, thus giving enough time for them to settle down to a stable state before they
are used for processing. Figure 4.2 shows the logic path in metastable and sta-
ble states.

Standard Cells and Compiled Logic Blocks

Vendors provide commonly used circuit blocks as a standard cell library. Standard
cells are predesigned, pre-validated for functionality, and pre-characterized. A typi-
cal cell library contains all cells corresponding to generic standard cells of both
straight and inverse functions such as NAND, AND, NOR, OR, XOR, XNOR, INV,
and buffers that are used in the process of synthesis as a minimum set of cells. It also
contains mega cells which surpass the complexity of standard gates like AND-OR-
INVERT (AOI), clock buffer (two cascaded inverters), INVERT-OR-AND (IOA),
and some complex functions such as adders, multipliers, multiplexers, encoders,
and decoders, which are most commonly used in SoC designs. The library of pads
contains different types of PAD cells such as input pads, output pads, and
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bidirectional pad cells with drivers of different drive strengths. The pad cells are
targeted at CMOS-compatible technologies or mix technologies like Bi-CMOS pro-
cesses. These are optimized for power, area, and timing and are used in automatic
cell-based SoC designs. Similarly, memory macros of various types. SPRAMs
of single port static RAM and DPRAMSs of dual port RAMs, SPRF of single port
register files (SPRF), and DP register files (DPRF) are examples. Different configu-
rations of the memories of different sizes can be generated using memory compilers
for SoC designs. Most of the semiconductor companies like Intel, Texas Instruments,
and IBM own their own fabrication units where they fabricate the SoCs designed by
them. Apart from this, there are also other contract fabrication companies like
TSMC, GlobalFoundries, etc. that accept SoC designs from fabless design houses.
This enables the fabless design centers to provide design as a service and realize
various system on chip (SoC) designs without the need for owning fabrication
facility.

Hard and Soft Macros

Macros are VLSI designs that are ready to be used in SoC designs. Macros are avail-
able as soft cores or hard cores. They are available on licence or royalty terms for
reuse in SoC designs. Soft macro is a core with source code in HDL behavioural
module to be integrated at the front-end or logic design stage before synthesis. This
allows the designer to customize the core to make it suitable for SoC integration.
Synthesis is carried out after integration. Hard macro is a core which is integrated at
the physical design stage. The hard macros cannot be edited or upgraded. Processor
and subsystem cores and interface cores are available as hard and soft macros for
SoC designs. Some of the examples of processor macros are Cortex M3/M4 and
advanced cores from ARM, ARC core from Synopsys, MIPS core, standard inter-
face cores such as PCI express, USB, UART cores, high-performance interconnect/
interface blocks like AHB master-slave cores, AHB-APB bridge, and AXI intercon-
nect cores from ARM.

Data Buffers and Buffer Managers

In systems, data is always stored for processing or forwarding in the on-chip mem-
ory or external memory interfaces. On-chip memories are arrays of registers such as
SRAMs, and external memories are SDRAM, DDR, etc. These memories are man-
aged for efficient storage and retrieval by efficient access when required in the sys-
tems. This is done in memory or buffer managers, or controllers. The memory
managers or controllers adopt techniques like linked lists and queuing the data for
efficiency in data access. Different types of memory controllers are available as IP
cores for SoC integration. They boost overall system performance in SoC.
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Design Assertions

Design assertions are the design events generated in SoC designs to check the tem-
poral relationship of synchronous signals for the correct functioning of the module.
The assertions in designs are tracked by the test bench checker module. The events
which are sure to happen for the correct functionality are monitored constantly dur-
ing design verification. A common example is when the signals from faster clock
domains cross to slower clock domains. Figure 4.3 shows a timing example. In this
example, by design, the signal Reclocked_Strobeedge must be set if the Strobe-edge
signal is set. The design assertion is added in the SoC design for monitoring, but not
the setting of Reclocked_Strobeedge when Strobe_edge is set, which indicates the
design issue, which can be debugged during verification. This is an important tech-
nique to make SoC design verifiable.
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4.1.4 Synchronous Sequential Functional Blocks

Control path in SoC designs are implemented using finite-state machines (FSMs).
Hence, FSMs are unavoidable in digital system designs. FSM-based subsystem
functions occur in a particular sequence and are repeatable if subjected to the same
set of input conditions. The system states are distinct and are stored in on-chip
memory. FSMs require the system states to be encoded and stored. There are two
types of FSMs, which are Mealy FSM and Moore state machine. In Mealy state
machines, the output of the system depends on the current state of the system and
the external inputs. If the output of the system depends on only the current state of
the machine, it is called Moore FSM. Most of the FSMs found in SoC design are
Mealy machines. Figure 4.4 shows Mealy FSM and Fig. 4.5 shows the Moore FSM.

In synchronous digital systems, the system state outputs are synchronous with
the clock signal. Most FSM-based systems are synchronous and the design proce-
dure of synchronous systems are standard and more mature. In synchronous proces-
sor systems, the operations like instructions, executions, logic, and storage functions
operate in synchronism with the system clock. In communication systems, data
transmission and reception happen in synchronism with a clock. Figure 4.6 shows
the timing diagrams of a few such operations. These require resetting logic to start
the design in a known default state. Resetting logic can be asynchronous or synchro-
nous to the clock.

A SoC can have many of large functional cores each operating with a clock of its
own as shown in Fig. 4.7.

The generation of the clock and its distribution to all the sequential elements of
the SoC design have a significant impact on the performance and power dissipation
of the SoC. For proper operation of the system, it is necessary that the clock edge
arrives at all the clock inputs of design elements in the SoC design at the same time.
But due to interconnect effects at submicron technologies, there will be a spatial
shift at the clock edges when they arrive at the clock inputs of different timing ele-
ments. This results in a phase shift with reference to the source clock. This spatial
shift in arrival time of the clock transition at different locations in the SoC (edge 1 in
figure arriving at edge 2) is called clock skew as shown in Fig. 4.8. The clock period

Fig. 4.4 Mealy finite-state
machine -O—u_mg

Combinational Logic

Memory
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Fig. 4.6 Timing diagrams of synchronous systems

in a given point of time at the same clock input of a design element in a chip can also
vary in time. This is called clock jitter. The clock skew and clock jitter together
constitute clock uncertainty. The design of the clock distribution network in SoC
design should ensure that the clock skew is considered in meeting the setup and hold
requirements of sequential elements in the design. Aside from timing closure
addressing metastability is important during the VLSI logic design for synchronous
sequential circuits.
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4.2 Asynchronous Circuits

System logic could also be designed as asynchronous circuits with reference to the
system clock. These are made up of asynchronous combinational circuits and asyn-
chronous signals. The output of the logic depends only on the inputs at the time, as
against the synchronous logic, where the output of the logic changes with the inputs at
the clock reference. Asynchronous logic outputs are difficult to predict in complex sys-
tems as they are traceable only to inputs, which can change at anytime. An adder, com-
parator, and a multiplexer/demultiplexer are a few examples of asynchronous logic
circuits. Figure 4.9 shows the adder circuit and its timing diagram. Hence, debugging a
SoC issue due to internal asynchronous logic circuits is difficult. Systems are realized
with many smaller sets of combinational logic circuits, which are synchronized with
clocks at appropriate levels to make them predictable and debuggable. These systems
are called globally synchronous and locally asynchronous systems (GSLA systems).

4.3 Speed Matching

If multiple signals are crossing over domains of different frequencies, it is required
to be double synchronized with the clock of the receiving domains to ensure that
they do not become indeterministic. It is very common in large systems to have dif-
ferent subblocks operating at clocks of different frequencies and hence different
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Fig. 4.9 Adder as
asynchronous logic with its
timing diagram
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speeds. In this context, it is necessary to add speed matching logic if there are many
related signals or multiple data lines crossing the domains of different speeds. The
easiest speed matching technique is to use asynchronous first in first out (FIFO) as
shown in Fig. 4.10 with source clock of a subblock writing and the destination clock
of a subblock reading. The FIFO threshold is maintained safely to the extent of the
clock speed difference. That means, by design, write access to the FIFO is permitted
only if the previous data written is read out. The FIFO technique of speed matching
is used in all communication protocol SoCs in cases where the transmit and receive
clocks differ either in frequency or phase or both.

l——Read_clock=f/2
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Fig. 4.11 SoC with NOC core

4.4 Network on Chip Architecture

For less complex ASIC designs, the hierarchical or crossbar bus architecture was
conveniently used to get the desired performance. With the growing complexity of
SoC, hundreds of IP cores get interconnected in a system. PPA requirements are
never a compromise. Many SoCs integrate many numbers of protocols into the
same chip which involves heterogeneous message transactions across the buses.
The best way for such SoCs is to interface the large number of IPs or functional
blocks using network on chip (NOC) cores. This circuit gets the transfer messages
from one of the blocks to the other using network interfaces. It converts all bus
transactions from source blocks to standard commands, which are decoded,
the recipient block is captured, and transaction level data is transferred efficiently. A
typical NOC core architecture for SoC design is shown in Fig. 4.11.

4.5 Hardware Accelerator

Certain functions in SoC do not require full implementation in hardware because they
are not time critical. The parts of the functions that are time critical are implemented
in hardware, and the partially processed data is accessed by the software to complete
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the function. The hardware section of the functional block which partially processes
the data is called the hardware accelerator. The best example of the hardware accel-
erator is the encryption engine, which is the time critical part of security function
that becomes the hardware accelerator. This encrypts the incoming data in real time
using the key configured in the hardware. The key generation part is implemented in
software running on general RISC processor core. Figure 4.12 depicts an encryption
accelerator engine for security features in a SoC.

4.6 Hardware Description Languages (HDL)

Design methodology has evolved so much in the last six decades, so it has the com-
plexity of SoC designs. A major part of the design evolution has to be attributed to
the development of hardware description languages and EDA tool algorithms which
can decode and process them to synthesize the equivalent logic by mapping it to the
target standard cell library, making it fabricatable. To appreciate the modelling pro-
cedure using hardware description language, it is essential to understand the differ-
ence between hardware and software implementation. Table 4.1 lists the differences
between hardware and software.

From the table, it is obvious to understand that the hardware description lan-
guage should bear a minimum and support concurrent logic structures and has to
have the concept of timing as against the software system description language
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Table 4.1 Difference between hardware and software

71

SI.

no. | Hardware Software

1 Concurrent execution of tasks. This demands all | Sequential execution of tasks and
tasks and events to operate in coherence with a instructions. There is no concept of
timing reference signal called clock synchronization to clock reference

2 | Very fast execution. Functional timing in Slow execution. Minimum timing
nanosecond scale units is achievable in hardware. | resolution is 100 s of microsecond
And therefore, time critical functions are
designed to be in hardware

3 Can be parallel Sequential though it can appear to be

parallel for the user

4 | Physical and costs are exorbitant if it has to be Can be recompiled
redone

5 Need to be first time success Can be corrected and recompiled

without much effort

6 | Hardware can be one time developed as platform | Can be redone easily
and reused for lifetime if the functionality is the
same

7. | Development from paper specification to physical | Need processing hardware platform
system on chip for sw development

8 | Need to verify fully imagining all scenario ahead | Verification is necessary to prove the
of fabrication and hence verification, and intent of the design but in the case of
validation is unavoidable minor defects, it can be corrected

called high-level programming language (HLL). This demands an understanding of
the hardware realization to be able to model it using HDL. Most commonly
used HDLs to model the SoC designs are SystemVerilog and VHDL. Language
reference manual from IEEE standard association defines the requirement of HDL
as language which should be “both machine readable and human readable, should
support the development, verification, synthesis, and testing of hardware designs,
the communication of hardware design data, and the maintenance, modification,
and procurement of hardware.” The reader is advised to go through hardware
description language books given in reference to master the semantics and syntax of
the constructs supported by the language as only relevant material is covered in this
book. For the language reference manual, reader is encouraged to refer to IEEE
documents from the IEEE standard association official site, describing the hardware
design is termed RTL (register transfer level) design. This represents the functional-
ity or design intent as a set of register transfers. This representation is most com-
monly used in the industry, which follows standard cell-based design methodology.
The design flow is process technology (foundry) independent for getting the stan-
dard cell library from the foundry. Depending on the style of hardware description,
models are classified as behavioural modelling, dataflow and structural
modelling.
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4.7 Behavioral Modelling of the Hardware System

If the functional behavior of the hardware is modeled using Verilog or VHDL, it is
called a behavioral model. Examples of behavioral models of a simple decade coun-
ter and multiplexer in Verilog and VHDL are given in Fig. 4.13.

When the hardware is behaviorally modelled, it has to be synthesized to a gate
level netlist. It is therefore necessary to make the model synthesizable. This is called
the synthesizability of the model. Though coding for synthesis comes with experi-
ence, there are tools which check if the model is synthesizable. These tools are
called lint tools. Using behavioural modeling, any complex functionality of the sys-
tem can be represented, and by making it synthesizable, it can be transformed to
gate level netlist. The structural description of the SoC netlist file is written using
HDL constructs.

4.8 Dataflow Modeling of the Hardware System

A system can also be modelled as dataflow where the data progresses with different
processing from different layers in a particular direction. These can be found out in
communication systems. These models are also synthesizable. In the primitive
sense, the dataflow model is the modelling sequence of the logic functions applied
on the input data to arrive at the desired output data. For example, the dataflow
modelling using Verilog for the circuit shown in Fig. 4.14a is given in Fig. 4.14b.

4.9 Structural Modeling of the Hardware System

Structural modelling is the style where the hardware modules are instantiated and
are interconnected to realize the function. HDLs, Verilog, and VHDL support struc-
tural styles of modeling. It is easy to instantiate and integrate the analog IPs in hard
macro representation and PADs in structural style into the SoC design. A netlist
output by the synthesis process is the structural modeling of the hardware system
using cell libraries, hard macros, and memory macros. Synthesis and physical
design tools write out netlist in this style. An example of a structurally modelled
code is shown in Fig. 4.15. SRDFF, INV, and ADD are the cells from the standard
cell library. In this style, the standard cells are instantiated, and signals are intercon-
nected to get the desired function. This is possible if the circuit design is of small
complexity, or else it becomes extremely difficult to design the functional module
in this style. However, in the case of a hard macro, the internal logic is protected,
and only interface signals are provided which can be interfaced with the interfacing
guidelines of the hard macro.
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// Verilog model of decade counter

module decade_counter (en, clock, rst,count);
input en, rst,clock;
output reg [3:0] count;

always @( posedge clock or negedge rst)
if (Irst)
count <= 4’h0
else
begin
if(en)
begin

if (count >=4'h0 && count <4'hA) //hex A=dec 10

count<=count+4'd1;
else
count<=4'd0;
end
else
count<=4'd0;
end
endmodule

// VHDL model of decade counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity decade_counter is

port (en,clk,rst : in std_logic;
count : out unsigned(3 downto 0));
end counter2;//port definition
architecture decade_counter_bhv of decade_counter is
signal reg : unsigned(3 downto 0);
begin

process(clk,rst)

begin

ifrst="0" or reg="1010" then

reg <="0000";

elsif (en ="1") then

Fig. 4.13 Behavioral model of decade counter in Verilog and VHDL
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if (clk'EVENT) and (clk="1") then
reg<=reg+"0001";
end if;

endif;

end process;

count <=reg;

end decade_counter_bhv;

//Verilog model of Multiplexer for shared logic
module sharing_example (a, b, ¢, d, cond, y);
parameter w = 16;

input [w-1:0] a, b, ¢, d;

input cond;

output [w*2-1:0] y;

wire [w*2-1:0] a_times_b =a *b;

wire [w*2-1:0] c_times_d = c * d;

assigny = cond ? a_times_b : c_times_d;
endmodule

//VHDL model of Multiplexer for shared logic

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity sharing_example is

generic (w : natural := 16);

port (a, b, c,d: in unsigned (w-1 downto 0);
cond : in std_logic;

y : out unsigned (w*2-1 downto 0) );

end sharing_example;

architecture rtl of sharing_example is

4 VLSI Logic Design and HDL

signal a_times_b, c_times_d : unsigned (w*2-1 downto 0);

begin

a_times_b <=a*b;

c_times_d <=c *d;

y <= a_times_b when (cond ="1") else c_times_d;
end rtl;

Fig. 4.13 (continued)
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module mux4x1{clock, reset, a, b, c, d, sel0, sell, yout};

input clock, reset, a, b, c, d, sel0, sell;
output yout;

regy;
wire reset_n

wire a, b, ¢, d, sel0, selt;

assign y=>a & ~sel0 & ~sel1;
assign y=>b & sel0 & ~sel1;
assign y=>c & ~sel0 & sell;
assign y=>d & sel0 & sell;

assign reset_n = ~reset;

always @ (posedge clock or negedge reset _n)
begin
if (~reset_n)
yout => 1°b0;
else
yout =>y;
end

endmodule

Fig. 4.14 (a) Example circuit for dataflow modeling. (b) Dataflow modeling in Verilog for the
circuit shown in Fig. 4.14a
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module counter5(clk, reset, count, SRPG_PG _in);
input clk, reset, SRPG PG in;
output [4:0] count;
wire clk, reset, SRPG_PG in;
wire [4:0] count;
wire \count[0] 29, \count[1] 30, \count[2] 31 ,n O,n I,n 3,n 4,n 5, n 6,n 7;

SRDFF \count reg[3] (RN (n_3), .CK (clk), .D (n_7), .SI (n_I),
.SE (count[3]), .RT (SRPG_PG in), .Q (count[3]));

SRDFF \count reg[2] (RN (n_3), .CK (clk), .D (n_6), .SI (1'b0),
.SE (1'b0), .RT (SRPG_PG in), .Q (\count[2] 31));

ADD g103__8780(.A (\count[2] 31 ), .B (n_4),.CO (n_7),.S (n_6));

SRDFF \count _reg[1] (.RN (n_3), .CK (clk), .D (n_5), .SI (1'b0),
.SE (1'b0), .RT (SRPG_PG in), .Q (\count[1] 30));

ADD gl105__4296(.A (\count[0] 29 ), .B (\count[1] 30 ), .CO (n_4),
Sn_5));

SRDFF \count reg[0] (RN (n_3), .CK (clk), .D (n_0), .SI (1'b0),
.SE (1'b0), .RT (SRPG PG in), .Q (\count[0] 29 ));

INV g110(.A (\count[0] 29 ),.Y (n_0));

INVgli2(A(n_7), .Y (n_1));

INV gl14(.A (reset), .Y (n_3));

endmodule

Fig. 4.15 Structural modeling style

4.10 Input-Output Pad Instantiation

As shown in Fig 4.16, structural code of Input-output pads for signal and power are
instantiated from the pad cells in the target library. Standard practice is to add them
in the top module of SoC hierarchy.
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4.10.1 Power Ground Corner Pad Instantiation (Fig. 4.17)

module M (01, I1, 12);

output Of1;
input I1;
input 12;
module M (O, I1, I2); Endmodule;
output of; module CHIP (Of1, I1, 12]); / / top module with I/O pads
input I1; . output Of1;
input 12; input I, 12;
. Endmodule; wirei_I1,i_12,i_Of1;

M M (O1(i_O1), .1 (i_1), .12(i_I2));
PDIDGZ Pad_I1 (.PAD(I1), .C(i_I1));
PDIDGZ Pad_i2 (.PAD(I2), .C(i_I2));

PDO02CDG Pad_0O1 (.PAD(O1), .I(i_O1));
endmodule;

Original design (M.v)

Modified design (CHIP.v)

Fig. 4.16 10 pad integration

Version: 1
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Fig. 4.17 Power ground pad integration



Chapter 5
Synthesis and Static Timing Analysis (STA)

Check for
updates

5.1 Part 1: SoC Synthesis

The process of converting a behavioural RTL model of a system to a structural (logi-
cal netlist) model using synthesis tool is called synthesis. The synthesis covered
here is with respect to the automatic cell-based design process. The conversion is
done in two steps: in the first step, the behavioural representation of the design is
converted to generic netlist, and in the second step, generic netlist is converted to the
netlist using cells from the target standard cell library, also called technology library.
Standard cell library contains all the design files of a set of standard cells (universal
logic gates or primitive modules), which are pre-designed, verified, and character-
ized by the foundry. The library includes behavioural models, timing models, and
physical models of the standard cells. They are targeted at a particular manufactur-
ing process used in the fabrication by the foundries. The fabrication houses design,
validate, manufacture, and process devices on silicon wafers using SoC designs
done based on an automated cell-based design methodology. The foundries provide
technology cell libraries for performing SoC designs. The standard cell characteris-
tics in the technology library data correlate with the standard cells processed on the
base wafers. The design files from the cell library are used during design synthesis,
verification, timing analysis, physical design, physical design verification, power,
and parametric analysis of the designs. Similarly, the input-output (IO) pads are also
characterized for electrical and physical parameters and are available as 1O or pad
libraries. The standard cell library and pad library are reused for multiple SoC
designs targeted at the same process technology. The synthesis tools use advanced
high-tech conversion and optimization algorithms to map the behavioural RTL
design to design netlists using cells from the standard cell library. The SoC design
netlist during the synthesis process is optimized by removing redundant logic and
logic sharing in the design, retaining the design intent. Optimization is carried out
using a synthesis tool which uses advanced logic optimization algorithms. Figure 5.1
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shar——
cinl
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Z

cin2
module multiplexer (a, b, sel,z);
input a,b,sel; b.
output z;

s et

assign z= sel ? bia;

INVerilog netlist fo 2-1 multiplexer
endmodule

module mux2tol (a, b, z,sel);
input a,b,sel;
output z;

wire a,b,cinl,cin2,sel;

AND21 ul(cinl,a,shar);
INV2X  u2(sbar,s);
AND21 u3(cin2,s,b);
OR21 ud(z,cinl,cin2);

endmodule

Fig. 5.1 Process of synthesis

depicts the process of synthesis. As it can be seen, the gate level netlist generated by
the synthesis tool is the structural representation of the behavioural description of
the SoC design. Hence, it is necessary that the behavioural model of SoC design in
RTL code is synthesizable. This demands correct use of HDL constructs for the
functions in RTL code. Only a subset of the HDL constructs is synthesizable, and
care should be taken to ensure that the RTL code is synthesizable. This is typically
verified by the lint tools. The process is called linting. It uses a set of defined rules
to check the RTL module for synthesizability, testability, and redundancy.

Logic synthesis flow using the synthesis tool is shown in Fig. 5.2. The design
inputs for the synthesis process are RTL design files, the standard cell technology
library, and design constraint file. The RTL representation of the SoC design is a set
of RTL files corresponding to system modules, functional and memory macros, and
IP cores. The standard cell library is a library of pre-validated logic cells, with the
circuit parameters and process parameters. Some of the standard cells are a set of
logic cells like INV, buffer, AND, NAND, OR, NOR, XOR, XNOR D flip-flops,
latch cells, complex cells like multiplexer (MUX) cells, encoders, decoder cells, and
complex cells like adders, multipliers, etc. Design constraints are design clock defi-
nitions, input-output signal delays, and user preferences, for the synthesis tool to
generates netlist for the specific PPA goals. PPA goals for the design are timing,
area, and power requirements. Synthesis is done in two stages. In the first step, it
maps the RTL design to generic cells from the GTECH library. GTECH library is a
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virtual logic library with generic logic cells with defined logic functionality. The
synthesis tool performs first-level logic optimization on the GTECH-based design
netlist using digital logic optimization techniques. The optimized GTECH netlist is
then mapped to the standard cells from the technology library in the second step.
Synthesis optimizes the mapped netlist at this stage to achieve set design goals. The
optimization algorithms use two-level and multi-level optimization techniques,
combination of sequential synthesis, and logic sharing techniques. More on the
theory of synthesis and optimization algorithms, user can refer to synthesis and
optimization of digital circuits by Giovanni De Micheli, Tata McGraw-Hill edition.
Synthesis flow also accepts power intent of the design using a unified power format
(UPF) for power optimization. This requires special types of power management
library cells in the standard cell library. Some of the special power management
cells are level shifter cells, isolation cells, always-on cells, etc. Different steps in the
synthesis flow are explained below. Figure 5.2 shows the SoC level synthesis design
flow. The synthesis tool writes out the optimized design netlist, updated design con-
straint, and design area, timing, and power reports. Designers at this stage will do
the first level of design check for logic equivalence and report analysis for design
performance against set goals.

5.1.1 Set Synthesis Environment

The synthesis environment is set up the directory structure for the synthesis process
by defining paths of RTL design files, design constraint files for timing, area and
power, and the choice of standard cells to be used. The RTL model design files are
in hardware description language (HDL) format, design constraint file is in standard
delay format (SDF), and a power constraint file is in unified power format (UPF) for-
mat. The SDC file contains clock definitions, input-output delays, maximum fanout
capacitances, and multiple cycle paths and false paths in the design, etc., and the
UPF file consists of design partitions like always on blocks, power domains, and
switchable and non-switchable power supplies in the design. Synthesis setup also
defines the name and the directory path where the output design netlist, report files,
and synthesis logs are to be saved. Typically, the library conversion into a specific
format as accepted by the synthesizer is done in this stage.

Read Library

Synthesis tool reads the standard cell library, macro library, and the 10 cell libraries.
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Read HDL Design Files

The behavioural models of the SoC design as RTL files in HDL format are read into
the synthesis tool. The most commonly used HDLs for SoC design are Verilog,
SystemVerilog, and VHDL. The design files have the file extensions of v for
Verilog, .sv for SystemVerilog, and .vhd for VHDL.

Elaborate the Design Files

This phase elaborates the design such that multiple usages of the functional mod-
ules are uniquely resolved. This stage identifies logic functions and ensures that
every other module can access the functions when they need them without any
conflicts. The tool does optimization by sharing common logic, removing redundant
logic, identifying registers, designing elements in the target library, etc. Design
parameters are identified, resolved, and finalised at this stage.

Read Design Constraints

The design constraint file has definitions of clock details and other signals like clock
source and input-output delay specifications. The file contains clock frequency,
uncertainty, and its relationships to the rest of the generated clocks used in the design
subbocks. Specific input-output delays, false paths (redundant paths), and multicycle
paths are listed and read in. Some of the design details, such as clock domain defini-
tions and their inter-relations etc., such that the tool can consider during design opti-
mization. The design realization uses suitable standard cells is guided by the design
constraints. The design constraint is input to the synthesis tool in the standard delay
constraint (SDC) file format. In brief, it consists of the design clock definition, group-
ing of the clocks (clock domains), and applying design rule constraints (DRC) like
maximum transition times for the signals. An example SDC file are shown in Fig. 5.3.
In the constraint below, the text after # is the comment of the constraint statements.

current_design top

# module design hierarchy for synthesis is set

set_units -time 1000.0ps

# sets time resolution

set_units -capacitance 1000.0fF

# sets load resolution

set_clock_gating_check -setup 0.0

# setup constraint for clock buffer

create_clock -name “clk” -add -period 7.0 -waveform {0.0 3.5} [get_ports clk]
# clock signal generation with period 7ns and pulse width 3.5ns (50% duty
cycle) to apply at design port clk

set_input_delay -clock [get_clocks clk] -add_delay 0.3 [get_ports clk]

# clock signal input delay constraint to account for clock uncertainty.

Fig. 5.3 Extract of the design constraint in SDC format
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Optimization Constraint

The primary SoC design goals like power, timing, or area, generally referred to as
PPA (power, speed performance, and area), are specified and fed in as the desired
optimization setting for synthesis. Based on the configured design goal, the design
is implemented. The selection of cells used for logic conversion depends on the
design goal setting during synthesis. The synthesizer maps the design logic to the
design elements in the standard cell library, meeting the constraints. Needless to
mention, the standard cell library will have many choices of design elements and
types of standard cells to map to realise the function. Low-power SoCs have become
the utmost necessity today. The optimising power and areas were the design goals of
the past in higher technology nodes as they were achieved by design techniques.
These in current deep sub-micron technologies are guaranteed by default. But
achieving low power for the high density systems on chips has been the new chal-
lenge. This require system level power optimisation techniques to be applied during
the design., The power strategy at the SoC level is written as power constraint for the
design. The power intent of the design is fed into the synthesizer in unified power
format (UPF) file. UPF is a standard format defined by Accellera which is published
as an IEEE standard. The most recent version of the standard is IEEE1801-2013.
UPF for SoC design allows definition of power management strategies with multiple
power supplies in SoC design. You can define different power domains in SoC
design, all the necessary resources for the signals to cross the power domains, the
insertion of level shifter cells or isolation cells across the power domains, and
switches to turn on and off the power supplies for managing power in the design.

Synthesis

After all the necessary input design files are read into the synthesizer tool, the RTL
design is converted to a generic netlist using GTECH library cells and then mapped
to a netlist using standard cells from a target cell library. The GTECH library con-
tains a set of technology-independent general logic cells. The first level of logic
optimization is performed at this stage.

Analyze

The generated design netlist is assessed against the design constraints, specified
optimizations, and design errors and warnings if any. Any ambiguous RTL logic
that the tool cannot convert to an equivalent netlist will be written out as errors or
warnings.
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Generate Reports

The design netlist, area, timing reports, and the updated design constraint files are
written out in files in the folder identified in the environment setup. The synthesis
errors and warnings are to be analyzed and the design fixes are provided. The
updated design is reworked. It is essential to check if there are any errors in design
conversion. Also, there will be a large number of warnings reported after analyzing
the design conversion, which need to be fixed. This is easily done using scripting
languages. Working knowledge of scripting languages like Perl and tool command
language-tool kit (TCL-TK) helps in analyzing large size log files the synthesizer
writes out.

There are two kinds of activities in the Synthesis step. The first one being design
conversion and report generation. The synthesis tool supports different com-
mands with many options for these activities.

5.1.2 SoC Design Constraints

The SoC design is synthesized with a specific design constraint to make it operate
at the specified range of operating frequencies (timing constraint) or restrict it to a
size (area constraint) or use a set of standard cells or combination of them to achieve
a low-power design (unified power constraint). The synthesis tool accepts the con-
straint file along with the design files to generate optimized design blocks. The tim-
ing file extracted from the design during synthesis is also fed to the timing analysis
and simulation tools for design verification with back annotation.

Consider the design example shown in Fig. 5.4.

The interface signals are shown in Table 5.1.

An indicative design constraint file for synthesizing above design is shown in
Fig. 5.5.

The design constraint file contains the clock definition and its parameters such as
the clock latency, the clock uncertainty, and input-output delays of other signals
in the design. The sample of the design constraint file is as shown in Fig. 5.5. The

Fig. 5.4 Example design
for the synthesis reset n

clock_A
out_block (w.r.t clock_A)

div 2 Block 2

clock_B |
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Table 5.1 10 signal description table for the design in Fig. 5.4

Signal Input/ Bit

name output width | Description Default
clock_A | Input 1 Master clock of frequency 50 MHz 1'b0
reset_n Input 1 Active low reset; design will be reset to the default 1’bl

values when this signal goes low

Derived clock from clock A. it is the divide by 2 of the | 1’b0
frequency of clock A of 50 Mhz. Its frequency is
25 Mhz

out_block | Output 3 Timer output w.r.t. clock_A. 3°d0

—

clock_B | Input

#crear.fn master clock for clock A for 50MHz
-domain domainl -name clock_A -period 10 [find / -port clock_A]

#crearmg generared clock for clk_B from clock A to ﬂer 25Mhz fre uency
define_gererated_clock [-name clock_B]-source [get_port clock_A[[-divide_by 2] -gei _.uorts clock_B

# semng ideal network aﬂr:bure
set_attribiite ideal network tru

get_attribute ideal /B1/clock_ A

#settin 'Eur latency for the ciock to model the pin delay or the delay due to the CTS
set_clo ncy 2m [get clocks clock

#setrm‘? rhe clock skew because of Clock tree szxnrhes:s
set_clock uncertainty -setup -rise -fall 2m [get_clocks clock

feggurtmpsj{aéggg gtgpurs with the delay due to the pin propagation delay

Fig. 5.5 Design constraint in SDC file format

constraint file also contains the maximum limit on fanout and net capacitance, any
restrictions on the standard cells to be used to map the design. The typical restric-
tions on cell usage for Synthesis include avoiding cells with low drive strengths,
permit the use of the standard cells from two or more standard cell libraries etc.

Synthesis tool generates the most optimized design netlist from RTL design files
considering the design constraint and technology cell library files. To a great extent,
the tool tries to optimize the netlist such that the no setup and hold violations are
found on the timing paths and don’t exceed given area and power targets as defined in
the design constraint file. However, there can still be violations on all set goals
which require designer’s intervention to fix. The present-day synthesis tool uses
analysis tools such as timing analyzers and design rule checkers for design mapping
and optimization.

5.2 Design Rule Constraints

The design rule constraints are imposed on synthesis by the physical limitations of
the technology library chosen to implement the design. Design rules include the
following three elements:

e Maximum capacitance per net.
*  Maximum fanout per gate.
*  Maximum transition time of the signal.



5.3 SoC Design Synthesis 87

These three constraints are used together to ensure that the library limits are not
exceeded in the design. A good designer studies the library property of the cell
library and constraints of the design so that the design meets the design goals with
the least number of iterations.

5.3 SoC Design Synthesis

Behavioural synthesis is also called architectural synthesis or high-level synthesis.
It involves identifying architectural resources needed for the behavioural represen-
tation of the SoC design, and binding the resources to the functions, and determin-
ing the execution sequence or order of execution. To achieve high-quality
(performance) netlist representation, the synthesis activity should be strategized
keeping in mind the following:

e Complexity of the SoC.

e Number of subsystem blocks in the SoC.

e Number and types of IP cores: soft, hard, and netlist.

e Capability of the computational system on which the synthesis is run.
e Debug capability of the designer.

Design synthesis writes the netlist with updated constraints and design reports so
that the designer can verify the netlist to retain the design intent. It also writes out
the audit log of the set of processes it has done with the appropriate errors and warn-
ings where it has violated and not met the design constraint. When the SoC com-
plexity is high, it is good practice to synthesize the design with two or three levels
of hierarchy. This helps to retain the module names in the design netlist and eases
the debugging of the logic nonequivalences, if any. The synthesizer tool can write
out the netlist either in hierarchical, with the level of hierarchy maintained in
the input file, or flat netlist where the entire design hierarchy is collapsed into a
single level. If the SoC design is of low complexity, it is synthesized in one execu-
tion with all the modules at the same level of hierarchy. This is called flat synthesis.
The entire design will be converted to a gate level netlist with the same level of
hierarchy as the smallest standard cell. Though the netlist is in a readable HDL
format, it will be in a flattened hierarchy with the set of instances and interconnects.
All the instances and interconnected net names are tool generated. This makes it
difficult to identify the logic functionality and correlate it with the RTL design.
Debugging such a flat design netlist is very difficult and time-consuming.

In hierarchical synthesis, design at block or module level, as per the hierarchy
maintained by the designer, is synthesized one by one, and then all the block
level netlists are read into the tool along with just the top-level module and writ-
ten out as the hierarchical or flat netlist as required. Any core available as a netlist
is read into the tool and the final netlist is updated. Hard cores, if read into the
tool, will be a black box with only interface connections and without any func-
tionality. It is therefore necessary for the designer to have knowledge of all
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the SoC instances. Along with the netlist, the synthesis SDC is also written out
which is to be fed in along with the netlist to static timing analysis (STA) tool and
physical design tools.

It is during the synthesis that all the flip-flops of the design are replaced with scan
flip-flops from the library to enable DFT activity (which will be discussed in the
next chapter). To optimize the SoC design netlist, it is essential to direct the tool
through the SDC constraint file to use a certain set of standard cells (restrict it from
using some low-drive standard cells) and mixed set of high-performance logic cells
from the same library depending on the design goals. An example of this is the use
of low and high threshold voltage (Vt) cells in appropriate modules to get a low-
power netlist.

5.4 Low-Power Synthesis

Design is synthesized for low power as a design goal, which requires additional
design constraints in universal power format (UPF). UPF defines the power man-
agement strategies by identifying always-on block, switchable blocks, and condi-
tions at which the switchable blocks are controlled and reliably without breaking
the functionality.

5.4.1 Introduction to Low-Power SoCs

Power consumption of systems has become one of the most important figures of
merits of the SoC designs. SoC power management has become a major require-
ment for SoC design as power density has grown to alarming figures, raising ques-
tions about the feasibility of design implementation. It is possible only if power
management requirements are considered at every stage of SoC design, right from
the architecture definition stage to the design tape out. The power density trend
versus power design requirements for modern SoCs is mapped in Fig. 5.6. The wid-
ening gap represents the most critical challenge that SoC designers face today.

In some of the nanometer technology cell libraries, the cell leakage power is
greater than the switching power, demanding an aggressive power management
strategy for SoC designs. Operand isolation, clock gating, multi-VT designs, mul-
tiple supply voltage (MSV) designs, dynamic voltage and frequency scaling
(DVES), and optimization of clock tree synthesis (CTS) is one of a few techniques
of power management in the SoC. In-depth treatment of power management is not
the scope of this book. However, to achieve low-power SoC design, it is essential to
define the power intent of the design in addition to the design intent and define by
design at all stages of design, including synthesis. The low-power SoC design flow
involves defining the correct power intent and successive refinement method as
design advances, as shown in Fig. 5.7. Power constraints in UPF define the power
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Fig. 5.6 IC power trends: actual vs specified. (Courtesy: Si2 LPC)
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Fig. 5.7 UPF content for power intent specification

distribution management, design partitioning into regions using independent power
supplies, and interfaces and interactions between these regions. To understand the
process of defining the power intent in UPF format, it is necessary to understand
a few terminologies used in the power context. A few important ones are defined in
this section.
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Power Domain Logic group or functional blocks in the design which is powered
from the same power supply source.

Drivers Ports or nets on rail, from which power is fed to the logic group or block.

Receivers The receive net or port where the power is first received in the logic
group or functional block.

Source Power source is the first distribution point from the power supply generator
circuit.

Sink The receive path for the power supply circuit from the logic group or block.

Isolation Cells Power management for achieving low power consumption in
SoC involves shutting down the power supply of the logic circuits operating in a
particular power domain when they are not active. While switching on or off the
power supply, there is a possibility of logic circuits to get into indeterministic
states, making the system unstable. To avoid this danger, the logic circuit in the
switchable power domain has to be held at known state and isolated from rest of the
logic circuits, and then, the power supply must be shut down. A special standard cell
in the library which isolates the power domain is called an isolation cell. It should
be ensured that logic is safely brought to known state and then power is switched
off. The set up for making the power domain switchable is shown in Fig. 5.8.

Level Shifters In SoC design, different power domains operate at different volt-
ages driven by different power sources, and the signals crossing the domains are to
be set to appropriate power levels in their respective power domains. This is accom-
plished by level shifters. These are special cells in the cell library which can boost
the power or buck the power to the appropriate level as required in the SoC design.

State Retention Before the logic blocks or functional cells are switched off when
not in use, the design will retain some of the states of SoC, and restored when power
is switched on. This is done by using the special cells called state retention power
gating (SRPG) cells in the library.

Multi-VT Cells Power optimization is achieved using mix of multi-Vt cells in the
design-netlist. They are cells of different threshold voltages in the design. The stan-
dard library for low power SoC designs has cells of different threshold voltage lev-
els. Synthesis tool algorithm depending on the design need, use cells of appropriate
threshold voltages. Low-Vt cells are applied for high-speed and high-Vt cells are
mapped for noncritical paths. This is possible by using multiple libraries containing
multi-Vt cells.
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Fig. 5.8 Isolation cell and power switch for low-power SoC designs

5.4.2 Universal Power Format (UPF)

UPF file contains the power intent of the SoC design. In this file, we define the
power regions with corresponding power supplies, always on block with a default
power supply, interfaces and signal interactions across domains, and power man-
agement strategies like the requirement of state retention. The synthesis tool reads
the UPF file along with the RTL and SDC files and generates the power-aware
design netlist which includes appropriate level shifter cells, isolation cells, and
power switches. Tools can also write out the modified UPF file, which can be used
in further stages of design like P&R for power-aware physical design and analysis.
The UPF file is used in logic equivalence check (LEC) for power-aware logic equiv-
alence checks. A typical UPF file defines the following functions using appropriate
commands which the synthesis tool can read.
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5.5 Reports

Apart from generating the design netlist both generic and mapped, synthesizer
writes out number of reports for design analysis. Most important reports are area
and timing of the design. These reports will give a preliminary idea of the area in
terms of the number of standard cell (NAND) gates or instances or in terms of the
silicon real estate area in square micrometres. A typical command for writing timing
and the area of the design is report timing and report area/gates. Variants of the
above command exist to report these parameters for specific instances, blocks or
subblock or path. The timing report generated by the synthesis tool for the report
timing command is shown in Fig. 5.9.

The area report generated by the synthesis tool for the report gates command is
shown in Fig. 5.10.

Summary at the end of the report shows a total number of instances and the area
for all the sequential cells, inverters, buffers, logic, and timing models, if any.
Figure 5.11 shows one such report.

These reports help to estimate the gate count, area. Timing margins in design can
be used to further optimize based on the design goal chosen. The area report lists the
total design area as well as a breakdown of the area per level of hierarchy. The area
numbers are calculated by counting the number of cells instantiated in the design
and multiplying by the cell area specified in the respective technology library. Refer
to Fig. 5.11 for synthesis area report. If there is any deviation, the design files are to
be modified to meet the constraint specified or explored if the constraints can be
relaxed.

11/clock
cout_reg_3/CK  <<< 0 0 R
cout_reg_3/Q DFFRHQX1 3 24.8646 +518 518 R
11/cout[3]
p0160A/B +0 518
pO160ASY NOR2X1 1 74 262+174 692 F
p0201A/B +0 692
p0201A/Y NAND3BX1 1 8.0 285+174 866 R
p0257A/B +0 866
p0257A/Y NOR4X1 1 36 185+133 999 F
top_counter/flags <<< out port +0 998 F

Fig. 5.9 Sample timing report showing timing of one of the design paths
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Generated by: Tool:Version

Generated on: date

Module: top_counter

Technology library: GPDK slow 1.0

Operating conditions: slow

Wireload mode: ZeroLoad

Gate Instances Area Library
AND2X2 10 166.3 slow
AOI21X1 2 333 slow
AOI2BB2X1 2 46.6 slow
DFFRHQX1 13 910.7 slow
DFFRHQX2 3 260.1 slow
INVX1 2 20.0 slow
INVX3 2 20.0 slow
NAND2X1 3 29.9 slow
NAND3BX1 2 39.9 slow
NAND4BX1 1 23.3 slow
NOR2X1 4 39.9 slow
NOR3X1 1 16.6 slow
NOR4X1 1 20.0 slow
OAI2BB2X1 8 186.3 slow
XNOR2X1 2 59.9 slow
total 56 1872.7

Type Instances Area Area %
sequential 16 1170.8 62.5
inverter 4 39.9 21!
logic 36 662.0 35:3

Fig. 5.10 Area report of the design module output by the synthesis tool. (Courtesy: Cadence for
Genus tool)

5.5.1 Gate Level Netlist Verification

The gate level netlist verification is done by a thorough review of errors and warn-
ings in synthesis and timing reports and fix them. It is essential to scrutinise the
optimization logs reported during the synthesis run to ensure that no required logic
is optimized or removed. Running gate level simulation for the verification scenario
is impossible as it is very time-consuming. The netlist elements will have timing
requirements for input-output and other design elements. Modeling these timing
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report area command on tool writes out the area report as below:

Generated by: Tool and version
Generated on: date

Module: Module Name
Technology library: GPDK slow
Operating conditions: slow
Wireload mode: Zero Load

Block Cells Cell Area Net Area Wireload

Module Top 56 1873 0 Zero_Conservative
12 24 880 0 Zero_Conservative
11 24 863 0 Zero_Conservative

Fig. 5.11 Area report depicting the number of the instances

delays and clock abnormalities and cell delays and understanding the timing needs
dynamically in simulation scenario is practically not possible. So, only a selected
number of critical test scenarios are simulated with the design netlist considering
their timing. Another most important check done to ensure correct generation of
design netlist is logic equivalence check (LEC). Every time synthesis is done, it is
essential to run the logic equivalence between the gate level netlist file generated by
synthesis process and the golden reference RTL file, which is used as input to syn-
thesis. The logic equivalence is verified using the formal tools. LEC tools also
have a good debug facility to fix nonequivalences if any.

5.6 Part 2: Static Timing Analysis (STA)

Timing analysis is an important step in the SoC design process, which in a way dif-
ferentiates it from software system development. In synchronous SoC designs,
clock abnormalities (clock skew and jitter), interconnect delays, and timing require-
ments of sequential cells make timing analysis a critical step for correct operation.
Analyzing design timing dynamically in different use case scenarios is practically
impossible. Hence, static timing analysis (STA) is performed on all the design
paths. This does not require input stimulus. The following are a few of the defini-
tions and concepts required to understand static timing analysis (STA):
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5.7 Timing Definition

Clock Signal Most of the SoCs are synchronous and operate in synchronism to the
timing reference called clock. The clock signal is a periodic, repetitive waveform
with a fixed frequency that will be used by the logic in the SoC design to time and
sequence its operations. In SoC design, the clock is used as a reference signal to get
events, states, and processed signal/data captured and propagated to the subsequent
logic elements.

Design Objects Design objects are the logic blocks with input ports, output ports,
and functional blocks realized using sequential cells such as flip-flops, latches, and
combinational circuits.

Clock Latency Clock latency is the time delay seen between the clock edges of the
source and the destination. This is also called network delay from the clock output
from the source generating it to the point under consideration. This includes clock
skew and jitter. It is modelled as an insertion delay seen on the clock. This is caused
by mismatches, imperfections, process variations in driver cells in the clock distri-
bution network, interconnect effects (cross talk) in submicron technology, and vari-
ations in operating conditions (variations in temperature and power supply voltage)
and due to varying loads. Figure 5.12 shows the sources of clock abnormalities.

Clock Domain A clock domain is a group of logic circuits operating on a single
clock or derived clocks that are synchronous to each other, allowing timing analysis
to be performed between them. Timing between two clock domains will be consid-
ered asynchronous and no timing check will be performed across the clock domains;
However, signals crossing the domains have to be carefully designed so that data
transfers reliably across clock domains in multi-clock domain SoC.

Logic delay

Clock %'Sclurce

——Source Latency-p--——Network Latency:

= ~Clock Latency: >

Fig. 5.12 Clock abnormalities
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Fig. 5.14 Input delay of the input signals due to external path delays

Clock skew or uncertainty is the maximum time difference between the arrivals
of clock signals at registers in one clock domain and between domains. Figure 5.13
shows the clock skew.

Input delay is the arrival time of the input signals is determined by the external
paths at an input port with respect to a clock edge, as shown in Fig. 5.14.

Output delay is the delay of an external timing path from an output port to a
registered input in the external path, as shown in Fig. 5.15.

Input and output delays are specified for ports of the SoC design in the design
constraint file in SDC format.
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Fig. 5.15 Output delay associated with SoC outputs till they get registered externally

Fanout on Nets Limit on maximum fanout of any net can be assigned, which will
be ten. That means that any net found in the design can drive a load equivalent to ten
input cells. This will be used to map the right standard cell with the correct drive
strength to the logic with the stated fanout.

Operating conditions like process, temperature, and voltage define the process
variations, which affect the functionality and performance of the SoC design. For
example, the higher the supply voltage, the smaller the delay; higher the tempera-
ture, and higher the delay.

Interconnect model is the parasitic parameter of the interconnect network for
different sets of inputs and operating conditions, which are used to estimate the
propagation delay of the path. There are many ways to represent an interconnect as
a model and most common one to represent it as distributed resistance and capaci-
tance as shown in Fig. 5.16. For analysis, wire segment with five to ten delay ele-
ments/nodes are considered for extracting the parasitics and path timing analysis.
This is called the wire load model. Timing analysis is carried out considering
the device propagation delay for the load connected to it.

Zero wire-load model represents zero net delays and is the pre-layout timing
information of the design which shows only the propagation delays of the standard
cells without the interconnect or wire delays.

A wire-load model is the net resistance and capacitance (RC) model used for
timing analysis, and it provides an estimate of the RC load of nets computed for
fanouts. Wire-load models are used to estimate the loading effect on interconnect
delays in the design. By default, in an area-based wire-load model, the timing infor-
mation is extracted from the technology library which will be used for timing
analysis.
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Fig. 5.16 Wire-load model for estimating resistance, capacitance, and pin capacitance

A false path is a path that will never be used during the operation of the SoC and
hence it does not need to meet timing requirements. For the example shown in
Fig. 5.17, if the select signals of the MUX1 and MUX2 are tied together, it is not
possible for the valid path from input 1 of MUXI1 to input 2 of MUX2. This path is
the false path by design.

Architecturally, functional modes of SoC can have false paths across modes as
no two modes coexist functionally in SoC operation. Signals that activate test modes
are examples of false paths in the functional mode. Avoid timing violations by set-
ting false path exceptions.

A multicycle path is a timing path that does not propagate a signal in one cycle.
And in SoC design, it is not necessary that all paths have to meet single clock con-
straint, meaning the data launched with the launch clock edge need not reach the
destination flop (capture clock) in a single cycle. For example, all the enables gener-
ated by the configuration registers will typically stay stable for multiple clocks, as
shown in Fig. 5.18. They need not be closed for single clock. By default, static tim-
ing analyzer considers all paths to be single-cycle paths, and it is explicitly required
to identify and notify to the tool the paths as multicycle paths in the design.
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SoC Functional Mode The functional mode of the SoC is the mode in which the
SoC is designed to work independently as intended. There can be one or multifunc-
tional modes for the SoC. Examples of multiple modes of SoC are low-power mode,
fully functional mode, test mode, etc. In each of the modes, the frequency of the
clock and timing requirements are different. It is required to analyze and fix timing
violations, in each of the modes independently.

5.8 Timing Delay Calculation Concepts

The timing information of the cells and the net in which they are connected to neigh-
bouring cells is listed in the library file in the form of a timing library format or TLF
file. The reader can refer to the timing library format and the ways to analyze the path
and cell delay from the standard TLF reference defined by Cadence. It defines the
procedures for defining the timing model of a standard cell and computing the path
delays, signal input, output slews, etc. Timing checks are the functions of cell delays
and signal slews. A few timing parameters are shown in Fig. 5.19.
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Fig. 5.19 Timing parameters
5.9 Timing Analysis

Timing checks can be done in two ways: dynamic timing analysis and static timing
analysis. Dynamic timing analysis is the process of analyzing the SoC with actual
functional vectors applied. This is a very cumbersome process, and also, it is highly
impractical to apply all functional vectors and go through their timing along with the
functionality. Also, dynamic timing analysis is next to impossible to assess at the gate
level and for all the functional vectors. Static timing analysis is the process of analyz-
ing the timing requirements of the independent paths without applying functional vec-
tors. The SoC design is considered as a large set of directional paths from input to
outputs, inputs to sequential elements like registers, and register to output signal paths,
and then for each of the paths the timing requirements are analyzed using library tim-
ing details specified in the timing library format (TLF) file of the library cells.

The timing library format (TLF) file contains timing models and timing data to
calculate I/O path delays, timing limits, and interconnect delays. Input and out-
put path delay values for the library cells. The timing check values are computed on
a per-instance basis and are called “cell-based delay calculation.” for the design. Path
delays in a circuit depend upon the electrical behaviour of interconnects between
cells. The parasitic information in the TLF file is the estimated interconnect parasitics
used for delay estimations of the design layout in the pre-layout stage of the design.
Because actual variations of the operating conditions cannot be anticipated during
characterization of delay data, derating models are used to approximate the timing
behaviour of a particular cell at selected operating conditions. This includes process,
voltage, and temperature models of the library cells at different operating conditions
called grid points as in TLF data which are used to derate process, voltage, and tem-
perature for off-grid points using interpolation or extrapolation equations.

In standard sequential cells like flip-flops, input signals need to meet certain require-
ments or limits for the physical cell to operate correctly. These limits, which are often
functions of design-dependent parameters, like input slew or output load are used dur-
ing the simulation to verify the operation of the cell. Models similar in concept to the
delay or slew models are used to provide the data for computing timing checks.

Setup time: The setup timing check specifies acceptable range for a setup time. In
a flip-flop, the setup time is the time during which a data signal must remain stable
before the clock edge. Any change to the data signal within this interval results in a
timing violation. Figure 5.20a shows a positive setup time—one occurring before
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the active edge of the clock and the difference between a positive and a negative
setup time.

Hold time: The hold time check specifies limit values for a hold time. In a flip-
flop, the hold time is the time during which a data signal must remain stable after
the clock edge. Any change to the data signal within this interval results in a timing
violation. Figure 5.20b shows a positive hold time and Fig. 5.20c shows positive
setup and negative hold time scenario.

Skew The skew timing check specifies the limit of the maximum allowable delay
between two signals, which if exceeded causes devices to behave unreliably. This
timing check is often used in cells with multiple clocks.

a
Setyp 1 Hold
Data 1 Data Data
b
+ve Hold
-ve Setup

Data 1 Data Data

c
+ve Setup -ve Hold
Data 1 Data Data

Fig. 5.20 Timing checks. (a) Positive setup positive hold. (b) Negative setup positive hold.
(c) Positive setup negative hold
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Setup and hold time checks are done with respect to the main control signal as in
Fig. 5.21 where the data or address bus has to be stable. This check is done for
embedded memories.

Removal Time: The removal timing check specifies a limit for the time allowed
between an active clock edge and the release of an asynchronous control signal from
the active state, for example, the time between the active edge of the clock and the
release of the asynchronous reset signal for a flip-flops as shown in Fig. 5.22. If the
release of the reset occurs too soon after the active clock edge, the state of the flip-
flop becomes uncertain. The output q in the flip-flop can have the value set by the
clear, or the value clocked into the flip-flop from the data input.

Recovery Time: The recovery timing check specifies a limit for the time allowed
between the release of an asynchronous control signal from the active state of the next
active clock edge as shown in Fig. 5.23, for example, a limit for the time between the
release of the reset and the next edge of the clock of a flip-flop. If the active clock edge
occurs too soon after the release of the reset, the state of the flip-flop becomes uncer-
tain. The output q in the flip-flop can have the value set by the reset, or the data input.

Period The period timing check specifies the minimum allowable time for one
complete cycle (or period) of a signal as shown in Fig. 5.24. The minimum period

Write_enable

Setup » Hold '

Address

Fig. 5.21 Setup and hold timings of sequential elements

Fig. 5.22 Reset
removal time

Clock 1
| Removal:
time

Reset
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Clock
Recovery
time
Reset
Fig. 5.23 Recovery time
Fig. 5.24 Clock period ’
Clock |
Clock Period
Fig. 5.25 MPH and MPL
MPH MPL
Clock 1
Clock Period

of the clock should be equal to maximum flip-flop propagation delay and maximum
combination logic delay in a path for the design to work.

Minimum Pulsewidth Low (MPL) The MPL timing check specifies the mini-
mum time a negative pulse must remain low. This timing check applies to “negedge”
logic as shown in Fig. 5.25 Also it will be used for transparent latch setup and hold
requirement used for slack adjustments.

Minimum Pulsewidth High The MPH timing check specifies the minimum time
a positive pulse must remain high. This timing check corresponds to the positive
edge logic.
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5.10 Modeling Process, Voltage, and Temperature Variations

Process (P) conditions vary from one integrated circuit (IC) to another or die to die
on a wafer. During the operation of a particular IC, the voltage (V) and temperature
(T) can vary depending on the functional modes or slowly over time. At any instant
in time, however, these variations are assumed to be small across a single IC. Usually,
a timing library is characterized by a certain set of conditions: a particular process,
voltage, and temperature. Based on the timing data in the timing library, the delay
calculator reports pin-to-pin delays, interconnect delays, and timing check values.
However, when the circuit operates under different conditions than those for which
the library was characterized, the reported delay calculation values can differ from
the actual values. To reflect the change in conditions, the delay calculator can scale
the values. TLF uses models to define scaling factors (or multipliers) for PVT varia-
tions. Each multiplier is determined using the model and the actual condition value.
For example, the multiplier to account for voltage changes is calculated from the
model VOLT_MULT, which is a function of the voltage. Similarly, the process and
temperature multipliers are calculated from the models PROC_MULT and TEMP_
MULT, which are functions of a process variable and the temperature, respectively.
The three multipliers are then simultaneously used to derate the delays and timing
checks (Fig. 5.26).

The P, V, and T variables can be used for best, typical, and worst-case analysis
and they can be specified in the form of triplets to reflect these cases. When the P, V,
and T variables are in the form of triplets, the final derated delays are also in the form
of triplets. In recent times, the SoCs have been integrated with sensors for monitor-
ing process, temperature, and voltage abnormalities through on-chip circuits and
sensors and control logic, which interrupts the processor to take action immediately,
thus avoiding fatal errors.

5.10.1 Egquivalent Cells

In some designs, identical cells are connected in “parallel” to increase drive cur-
rents, as shown below. For cells to be considered in parallel, all the identical inputs
and outputs must be tied together, as shown in Fig. 5.27. Such configurations with
identical cells can be recognized by the delay calculator so that they can be treated
in a special way when doing delay calculations.

If cells are identical in behaviour but not physically identical (e.g., two buffers
with different cells with different delay data or different drive strengths), some

Fig. 5.26 PVT variations Multiplier Scaling factors
— model —> Kp, Ky, Kt

f(P), #(V), K(T) Kpy1=KpxKyxKr

Variable
(P,V,T)



5.11 Timing and Design Constraints 105

Fig. 5.27 Equivalent cells A | Y

Cell 1

Cell 2
AP~ Y

delay calculators require the cells to be labelled as equivalent in order to recognize
them as being in parallel. Only with such labelling can those delay calculators rec-
ognize these cells as being parallel and make the improvement in drive strength.
Additionally, the corresponding pin names of the cells must match. That is, for two
dissimilar buffers, the pin names for both cells should be the same. In the example
shown above, the input and output pins of both cell 1 and cell 2 are the same.

5.11 Timing and Design Constraints

Timing and design constraints describe the “design intent” and the surrounding con-
straints, including synthesis, clocking, timing, environmental, and operating condi-
tions. Set these constraints on start points and end points to make sure that every
path is properly constrained to obtain an optimal implementation of the RTL design.
A path begin point is from either an input port or a register clock pin, while an end
point is either an output port or a register data pin.

Use these constraints to:

* Describe different attributes of clock signals, such as the duty cycle, clock skew,
and the clock latency.

e Specify input and output delay requirements of all ports relative to a clock
transition.

e Apply environmental attributes, such as load and drive strength to the top-
level ports.

e Set timing exceptions, such as multicycle paths and false paths.

In addition to specifying the timing and design constraints, one can specify opti-
mization constraints. By default, the tools try its best to build logic to get the worst
possible negative slack (WNS) numbers. To optimize, if the tool finds a WNS path
that is meeting timing, then it optimizes the path with the next WNS. This continues
until all paths meet their timing goals. However, the optimization process stops
when it finds a path that is WNS and not meeting timing. Here the designer can
specify the group timing paths into different cost groups. When multiple cost groups
exist, the tool will optimize the WNS path in each cost group. If it cannot meet the
timing goal for the WNS path in a cost group, then Genus will continue to try and
optimize the WNS paths in each of the other cost groups.
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A cost group is a set of critical paths to which you can apply weights or priorities
that the optimizer will recognize. Paths assigned to a cost group are called
path groups.

Timing analysis is carried out in two methods: one with wire-load models during
synthesis or by actually feeding the layout information in the form of LEF files to
the static timing analyzer (STA) to reduce the risk of timing closure after the physi-
cal design. Static timing analysis execution flow is shown in Fig. 5.28.

The purpose of timing analysis are to make sure the design meets the design goals
after synthesis. Timing analysis identifies problem areas in the design and helps you

Fig. 5.28 STA command

flow or tool flow
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Read Target Library

v

Read HDL design
files
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determine ways to solve these problems. After synthesizing a design, generate tim-
ing reports and area reports and check the selection of design elements in the design
netlist. For static timing analysis, the design is represented as a set of timing paths.
Paths are inputs to registers, register to registers, and regiister to outputs with start
and end points. The actual data arrival time is computed and compared with
the expected arrival time of data as specified in the constraint during analysis. That
is, analyzing the timing compares the actual path delays with the required path
delays of the design. Timing analysis computes gate and interconnect delay, traces
critical paths, and then uses the critical path values to create timing reports. This
helps you identify constraint violations. Constraint violations are negative slack in
the path. It ensures that the setup and hold requirements of all the sequential ele-
ments in the design timing paths are met, or else by suitable algorithms, the viola-
tions are fixed by the concept of slack borrowing and slack stealing from cascaded
paths by inserting transparent latches appropriately. The leftover paths which the
STA tool cannot fix are to be handled by manually fixing the timing violations.

Figure 5.28 shows the timing analysis flow for the single functional mode of the
SoC. If the SoC is designed for multiple modes, timing analysis is carried out for
each of the modes and the timing violations must be fixed. The violations are fixed
by replacing the standard cells from alternative choices in the library or by modify-
ing the constraints in a few cases. In the worst case, the RTL design is modified to
meet the required timing. Functional modes in SoC are controlled by a set of con-
straints during the mode in the design which drive timing analysis. A design has
several functional modes, such as test, scan, and normal functional modes. For
example, in a multiple supply voltage (MSV) design, a functional mode can have
many states, such as shutdown mode, hibernate, and active modes. The timing con-
straints for each of the modes will be different and sometimes conflicting from one
another. The design needs to be analyzed in each of the modes with appropriate
constraints. Any violations found are appropriately fixed. The timing fix in one of
the modes may introduce a critical path in another mode. Today’s optimization tools
support multimode timing analysis and optimizations, thus reducing by one extra
design cycle.

5.12 Organizing Paths to Groups

Organize timing paths in your design into the following four cost groups:

* Input-to-output paths (120).

e Input-to-register paths (I2R).

* Register-to-register paths (R2R).
* Register-to-output paths (R20).

Organizing paths in the design into groups is helpful when generating timing
reports for analysis. The organization of the timing paths helps to break the number
of path sets so that the designer can use his scripting skills to sort, find, and replace
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Module: Adder
technology library: gpdk180nm
operating conditions: typical case (balanced tree)
wireload mode: zero
Pin Type Fanout Load  Slew  Delay Arrival
(fF) (ps)  (ps) (ps)
(Clock clk) launch 0 R
a_ffolelk <<< 0 R
q ffo/g (u) unmapped d_flop 3 35.8 0 +120 120R
add 1 2/A[0]
g2/in_0 +0
g2/z (u) unmapped NAND2 1 136 0 +126 246 F
gd/in_0 +0
g4/z () unmapped NAND2 3 256 0 +156  402R
gl4/in_ 0 +0
gl4/z (u) unmapped NAND2 1 25.6 0 +126 528R
g26/in_0 +0
g26/z (u) unmapped xnor2 1 23.6 0 +136 664 R
add 1 2/z[4]
z ff3/d <<< unmapedd flop 3 +0 664 R
z_ff3/clk (u) unmapped _d flop 0 +120 784R
(Clock clk) Capture 500R

Timing Slack : -284 ps (Timing Violation)
Start Point: a_ffo/clk

End Point: Z_ff3/d

u: Unmapped pin(s).

Fig. 5.29 Timing report from synthesis tool

and strategize the way to fix the violations. By default, the timing report shows the
critical path from each path group. The critical path is the timing path in the design
with the greatest amount of negative slack (margin). The goal of the designer to
have all design paths with positive slacks, with enough margin. This extra margin is
to balance for any error between the STA design algorithms and actual design tim-
ings when fabricated. Fixing the timing violation involves standard cell replace-
ments with better propagation delays and registering the intermediate cell in the
path, thus breaking it into two paths without affecting the functionality and getting
the waver if the path is a false path. A typical timing report is shown in Fig. 5.29.
As it can be seen, the path is register-to-register (R2R) path with a start point as
a_ff0/clk and an end point as z_ff3/d. The instance u contains unmapped pins, with
anegative slack of 284 ps. The path consists of d flip-flop and nand2and xnor2 cells.
The violation in the path can be fixed by two ways: by changing the nand2 and
xnor2 cells to faster cells if they are available in the standard cell library and by
splitting the path by registering the output of second nand? if it does not affect the
functionality. If the path is split by registering the output of the second nand?2 cell,
new path will terminate at another d flip-flop which will be the end point of the new
R2R path, and the new path timing would be 402 ps. With the capture timing of
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500 ps, it will result in positive slack. However, the effect of this change on func-
tionality will be then verified by running logic equivalence with the modified netlist
and the golden reference RTL file.

5.13 Design Corners

Design corners represent the behaviour of the design at different process, voltage,
and temperature conditions. The process, voltage, and temperature (PVT) variations
and their effects on the transistors are modelled as PVT models of the transistor as
shown in Fig. 5.31. The technology library is referred to by the transistor channel
lengths L. For example, 45 nm technology has a transistor channel length of 45 nm,
and 65 nm technology has the transistor channel length of 65 nm. The process rep-
resents the length L of the transistor. For the same temperature and voltage, the
current will be more in 45 nm technology than of 65 nm technology owing to the
formula I = uC, %(V@ - Vt2 ) . Recalling the transistor theory, the smaller the pro-
cess L, the larger the current. This current will charge and discharge the capacitor
faster, and hence the delay will be less (Fig. 5.30).

The supply voltage is fed to the SoC from outside or through the on-chip regula-
tors. This voltage can change over time. Hence, SoC is designed to work accurately

Delay
Delay
Worst
Worst
Nominal
Nominal
Best
Best
Fast Typical  Slow
Process = L Minimum  Typical Maximum
Voltage v
Delay
Worst
Nomina
Best

Minimum  Typical Maximum
Temperature

Fig. 5.30 PVT characteristics of transistors
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Fig. 5.31 Multimode set_attribute lib_search_path ...
timing constraint analysis set_attribute hdl_search_path ...
script file

set attribute library ...

read _hd| <hd| _file_name>

elaborate

create _mode -name {function Sleep Test}

read_sdc -mode function SOC_main.sdc io_function.sdc
read_sdc -mode Sleep SOC_sleep.sdc io_SOC_sleep.sdc
read_sdc -mode SOC_Test SOC _test.sdc jo_test.sdc
syn_map

report timing

write_encounter design

over a range of voltages with the typical voltage of the claimed voltage in the data-
sheet with £10 variation. From the equation mentioned above, the higher the volt-
age, higher the current, and the faster the circuits.

The SoC circuit operations also depend on the ambient temperature. The higher
the temperature, the higher the electron collision in the device and the current flow
reduces and hence the delay increases. This also needs to be modeled and SoC is
expected to work accurately in all working environments at all prevailing ambient
temperatures.

PVT modelling captures this variation within the chip. The logic circuits fabricated
on dies in the center of the silicon wafer show pretty accurate properties in PVT val-
ues compared to the circuits on the periphery of the wafer. Though the difference is
not much, it can affect the logic functionally. This is modelled as a process called
on-chip variation (OCV). So, the inter-chip variations of PVT are modelled as OCV
and intra-chip variations as PVT. It is expected to make sure that the design goals are
met with these variations also. This is achieved by analyzing the timing using these
models. Some normal terminology used in the context of SoC design timing are the
following:

e Worst PVT: process worst, voltage min, and temperature max, also referred to as
slow-slow corner.

e Best PVT: process best, voltage max, and temperature min, also referred to as
fast-fast corner.

e Worst cold PVT: process worst, voltage min, and temperature min, also referred
to as slow-fast corner.

e Best hot PVT: process best, voltage max, and temperature max, also referred to
as fast-slow corner.
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5.14 Challenges of STA During SoC Design

SoCs of today operates in multiple modes like active, sleep, and test modes, to name
a few, and the timing requirements in each of these modes are different. Mode is a set
of functional behaviour of the system. These modes share the same logic in many
places in the design. It is required to meet the static timing in all these modes sepa-
rately for reliable operation of the system. Static timing analysis will require a differ-
ent set of design constraints in each of these modes. For example, the design in sleep
mode may use a different supply voltage or system clock frequency. Fixing the tim-
ing issues in one mode may result in issues opening in the other mode, thus contra-
dicting the design needs. To take care of these contradictions, the static analysis tools
support multimode timing analysis capability. This involves creating modes in the
constraint files and feeding corresponding constraint files for generating reports. The
violations in the reports are fixed by the same method as the issues in the single mode
SoCs. A typical STA analysis script file for multimode SoC is shown in Fig. 5.31. In
the example shown, the SoC is functioning in two modes apart from the normal
active mode. They are sleep mode and test mode, and the corresponding constraint
files are read into the STA analysis tool in the script. The tool picks appropriate tim-
ing data from the technology library for analysis and generates timing reports.

SoC design timing is affected by multiple parameters like the routing delays,
load on the logic, and the fanouts of the gates used. Any design change which is
inevitable during the design phase may result in different paths, which can be seen
in multiple runs of the STA reports. Hence, it is a continuous process to perform
STA timing analysis till the design is finalized. Apart from the timing reports for
analysis, the reports also point out the un-clocked registers, multiple driven regis-
ters, combinational loops, and redundant logic that has to be corrected knowing the
design details. The STA tools also have the capability of identifying these in the
SoC design to help the designers fix them.



®

Check for
updates

Chapter 6
SoC Design for Testability (DFT)

6.1 Need for Testability

The functionality of SoC is guaranteed if its design and fabrication are done cor-
rectly. Verification during the design process confirms the correctness of design. But
testing the fabrication of millions of transistors, which make the device, is impos-
sible to verify on the chip. Complicating the problem further is the complexity of
SoC design, which is increasing day by day. The testability after fabrication is an
important factor for its success. Design for testability (DFT) is an important prac-
tice, that provides a means to comprehensively test a manufactured SoC for quality
and coverage. Failures to detect flaws in fabrication before putting a chip in a prod-
uct can be disastrous and often fatal. In SoCs, all transistors and internal intercon-
nects of the SoC design are generally inaccessible to test even during fabrication to
ensure correct fabrication. Special techniques are required to make device testing
possible. DFT is the concept of adding extra logic during the design to enable test-
ing of most of the logic design. To ensure correct fabrication, all sequential cells
such as D flip-flops, memories, and input-output pads, which are generally inacces-
sible, to ensure correct fabrication need special logic to test either directly or indi-
rectly. In the majority of the SoCs, approximately 70 to 75% of the logic circuit is
comprised of sequential design elements such as D flip-flops. Around 60% of
the majority of the SoC’s silicon area is on-chip memory. Input-output pads in SoC
design provide access to the outside world in products. Hence, if all these design
elements are made testable by some means, there is a high probability of SoC work-
ing. However, to achieve this, it is needed to get one hundred percent coverage on
testability of design elements. The DFT techniques aim to achieve this goal. These
techniques need additional test mode to be added to the SoC design with extra logic
which increases the SoC design area. Considering the criticality of the problem and
the exorbitant cost of respin of SoC designs, it is still a requirement. Figure 6.1
shows the DFT steps in SoC design flow.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 113
V. S. Chakravarthi, A Practical Approach to VLSI System on Chip (SoC) Design,
https://doi.org/10.1007/978-3-031-18363-8_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18363-8_6&domain=pdf
https://doi.org/10.1007/978-3-031-18363-8_6

114 6 SoC Design for Testability (DFT)
6.2 Guidelines for SoC Design for Testability

Most of the SoC designs are synchronous sequential logic functions with predict-
able behavior. Therefore, they are inherently testable. It is easy to implement test
logic around synchronous logic to ensure correct manufacturability. But with the
functional complexity, multiple complex clocking schemes pose challenges in mak-
ing a chip testable. It is necessary to follow the DFT guidelines to make a chip test-
able for manufacturing issues. The following are the design guidelines for testability
of SoC designs:

e The system architecture must have minimum number of clocks most preferably
single clock or clocks required for other subblocks in the design generated from
a common clock source.

e All the inputs must be registered (stored in registers before processed) to avoid
signals leading to metastability at the point of processing them.

Setup DFT
environment

Read RTL Design
files & Constraints

Modify RTL v

DesignFiles Read Target
' Library

Synthesize :

<JFT RuleCheck Passed:

Yes

Add Testability
Logic

©

Fig. 6.1 DFT flow in SoC design
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» Control signals such as set, reset, and clock inputs of the flip-flops should not
have any combinational logic in their paths as much as possible.

* Asynchronous signals for reset input of the flip-flop must be avoided if possible.

e None of the clock inputs of the timing elements in the design are to be gated or
delayed through delay cells or buffers.

e Input signals must not be delayed through delay cells.

e Consider routing net delays are to be shorter than logic propagation delays of
the cells.

Fig. 6.1 (continued)

Though most of the logic blocks are synchronous, there will be a few asynchro-
nous blocks that pose huge challenges for testability. It is good practise to separate
the asynchronous logic block and isolate it from the synchronous SoC logic core for
easy implementation of DFT logic. Spreading the asynchronous logic all around the
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SoC design makes it not testable. Whenever the above rules are violated in a SoC
design, it is essential to analyze for timing, testability, and manufacturability.

6.3 DFT Logic Insertion Techniques

DFT techniques involve adding additional logic to the SoC design to make it test-
able. The main DFT techniques adopted during the SoC design are:

e Scan insertion.

* Boundary scan.

* Memory BIST.

* PTAM.

* Logic BIST.

e Scan compression.
* OSCG.

6.3.1 Scan Insertion

Scan insertion is the method of replacing D flip-flops of the SoC design with scan-
nable flip-flops and serially connecting them into a chain as shown in Fig. 6.2. A
scannable flip-flop cell is a special flip-flop with test logic. This makes most of the
SoC design testable, as in most of the synchronous SoCs, around 70% of the design
cells are flip-flops. The extra scan logic inserted allows you to test the sequential
state of the design through the additional test pins of the scan flip-flops in test mode.
Scan cell insertion and stitching are done using synthesis tool. The automatic test
pattern generator (ATPG) tool is used to generate special scan patterns to test the
design by means of fault simulation. The test patterns are test vectors which are fed
into the design through test input pins and by capturing the design response at the
scan test outputs. The fault in the chain is identified and fixed by a scan test during
design. The goal of the ATPG is to achieve higher fault coverage and generate a
more compact test pattern-set for the design. The scan test concept is shown in
Fig. 6.2. As in the figure, the scan_input (scan_in) and scan enable (scan_en) are
extra scan test input signals, through which scan chains are loaded with test pat-
terns. Scan chains are not required in the normal functional mode. To enable the
scan mode for DFT, the scan mode (scan_mode) input signal is added and the output
response of the scan chains in the design is monitored at the output signal scan out-
put (scan_out). Hence, scan chains in SoC design have separate input and output
access for DFT. During scan-mode, test data is shifted through the scan chains.
There can be as many sets of scan test input-output pins as chains. The scan test
pattern is shifted through the scan_in input pins and shifted out through the output
scan_out pins. These extra input-output pads can be multiplexed with the
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Fig. 6.2 Scan insertion concept

functionally compatible input-output pads without increasing the number of 10
pads in the SoC. The length of the scan chain depends on the memory capacity of
the tester, which can hold the test pattern. In practice, there will be around 2000-2500
scan flops connected in a scan chain. Hence, depending on the complexity of the
SoC, the number of scan chains is decided, and accordingly, scan in and scan out
signals will scale up. The control signals like scan mode and scan_en are shared
across chains in a SoC.

To insert the scan chain, it is required to check if the D flip-flops are all testable
and the clocks are controllable. It is also required that the asynchronous/synchro-
nous resets be held at inactive levels in scan test mode. These are checked as a
process called DFT rule check during the SoC design. There are some lint tools
which check the design for DFT rules.
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6.3.2 Boundary Scan

Boundary scan (BS) logic is inserted to test the input-output pads of a SoC design,
independent of its functionality. Boundary scan cells are inserted between each SoC
pad and the system functional logic. They are then connected at the boundary, simi-
lar to scan chain, called a boundary register chain. The entire boundary scan logic
inserted has to comply with the IEEE 1149.1 or 1149.6 standard which defines the
procedure to test the input-output pads of the SoCs. The boundary scan test insertion
consists of the insertion of the JTAG macro core, insertion of the boundary scan cell,
and connecting them as a boundary scan chain. The JTAG macro core is inserted
into the netlist manually or as a part of the boundary scan insertion procedure. The
JTAG macro is a generic core used for interconnect testing on printed circuit boards
by monitoring the value of each chip’s input and output independent of on-chip
system logic. The JTAG core enables controlling the pattern in and out of the bound-
ary scan register for testing. The boundary scan concept is shown in Fig. 6.3.

As it can be seen in Fig. 6.3, the BS cells are added in between the SoC 10 pad
and the system core logic. The BS cells are connected to form a chain of registers
which are fed by the JTAG core with the test pattern. When the pattern is completely
shifted, it is shifted out through the test output pad, which is monitored. This test
pattern can also be bypassed and sent directly to the test output pad to test the IO
pads of other chips on the board. The JTAG core has five standard 1O ports called:
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Fig. 6.3 Boundary scan concept
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e Test data input (TDI): Input port through which the test pattern is fed in.

e Test clock (TCK): Test clock used to test the IO pads.

e Test mode select (TMS): When set, enables the pad testing through boundary
scan logic.

e Test reset (TRST): Optional test reset input port to reset the test logic and state
machine.

e Test data output (TDO): Output port through which the pattern can be monitored.

The standard JTAG core has to be compliant with the IEEE Std. 1149.1 standard
and the later IEEE Std. 1149.6 for test access port (TAP) and boundary scan archi-
tecture targeting manufacturing faults in the SoC ports and in the interconnection on
PCBs. The JTAG core logic in the boundary scan architecture is shown in Fig. 6.4.

A standard JTAG core logic inserted as the boundary scan test logic contains:

» Test access port (TAP) controller which is the control state machine generating
control signals to various internal logic.

* Instruction register (IR) which holds the opcode of the test instruction to be
processed.

 Instruction decode logic which decodes the instruction written into the instruc-

tion register.
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Fig. 6.4 JTAG BS architecture
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* Bypass register (BR) which blocks the test pattern to be fed to the boundary scan
chain but passes the pattern to the TDO port.

e Device ID register which holds the unique identification number of the
SoC device.

» Testdata output (TDO) which outputs the test pattern after it is adequately shifted
through the BS chain.

e (Optional) Custom test data registers to support user-defined test register which
enables custom test to be done on the IO pad specific to the SoC. This is not
necessary but optional facility provided to the designer.

To test the IO pads, instruction code is fed through the TDI pin into the instruc-
tion register of the JTAG core. The instruction is decoded, based on which the data
register with the identified pattern is shifted through the chain of Boundary scan
(BS) cells by feeding as many clock pulses equal to the number of BS cells and is
shifted out through the TDO output pin to get the same pattern as input. This ensures
that the pads are working as intended. It is required to support the four instructions:
BYPASS, with instructions EXTEST, RELOAD, and SAMPLE when the JTAG
core is used. The mandatory instructions ensure the SoC chip interface test on the
PCB is doable. The BYPASS test is done to bypass the internal boundary scan reg-
ister and access the next chip interfaced to the SoC chip under consideration, while
the EXTEST is the external test by feeding the desired pattern. The RELOAD and
SAMPLE tests are user-defined. In addition to these tests, JTAG supports accessing
DEVICE ID and DATA registers in TAP through ID_CODE and USER_CODE
tests. The designer can insert any number of the data registers, supported by the
multiplexer logic, to choose one among them. The TAP controller FSM generates
a control signal for selecting the data register and shifting the data pattern from the
data register depending on the instruction loaded in the instruction register. The
selection of instruction or test pattern and shifting the result of the instruction is
done through the TDI and TDO ports in the design. Earlier JTAG core compliant to
the standard IEEE 1149.1 does not define the testing of the differential pads
and the interconnects with capacitive coupling. This limitation is addressed in the
later standard IEEE 1149.6. For more details, you can refer to the respective stan-
dard documents.

6.4 Boundary Scan Insertion Flow

The boundary scan insertion flow is shown in Fig. 6.5.
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6.4.1 Memory Built-in Self-Test (MBIST)
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Embedded memories in a SoC are tested by self-test structures called memory built-
in self-test (MBIST). One or more MBIST structures are added to memory behav-
iour models. Hence, this can be directly instantiated into the SoC design. The
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MBIST circuitry interfaces with the higher-level SoC functional blocks of the sys-
tem. In system functional mode, through the interface, functional system data is
passed to the embedded memory, bypassing the BIST circuitry. When in BIST
mode, the MBIST circuitry runs the self-test function, providing a signature-based
pass/fail and “test complete” indication to the system, which can be accessed by the
user. The self-test function for the memory can be modelled as a behaviour models
using HDL, which can be verified by simulations using standard HDL simulators.
The BIST architecture can also be customized in many cases, which enables
the grouping of small memories into clusters of memories, executing user-defined
test patterns, and generating customizable address sequences, for memory testing.
Today’s SoCs contain a large number of embedded memories, and testing of them
needs an automated test strategy. Conventional DFT and ATPG approaches cannot
be used for testing embedded memories. The fault models of memory differ from
those of standard logic design fault models in that memories will have address
faults, memory cell faults, retention faults, stuck-at faults, and coupling faults, to
name a few. Furthermore, using external automatic test equipment (ATE) to apply
test patterns targeting these faults is also impractical and inefficient as large num-
bers of patterns are required to test every memory cell structure and also cannot
cover all faults. Controlling and observing each memory from the primary pins of
the SoC requires too much silicon real estate and reduces the performance of the
SoC. If test patterns are applied from an external source, they cannot be reused for
the next generation of SoCs using the same memories. These limitations are over-
come by integrating an MBIST architecture involving a test pattern generator and
response comparator logic into the SoC design. Advantages of MBIST are that SoC
testing can be done without the need for an external tester and can be done as func-
tional testing, thus providing a test mode. With on-chip pattern generation circuitry,
the test is executed so fast and with a signature-based response analysis and generat-
ing result that it reduces the need for an external analyzer and external data storage.
Hence, the test overhead of inserting the MBIST architecture into the SoC is very
less. BIST integration is similar to any other functional block integration.
The MBIST architecture is shown in Fig. 6.6.

SRAM memory consists of three main parts: an address decoder, a memory
array, and the memory access logic. A memory fault can be in any one of these or
more MBIST targets. Major memory faults are classified into:

e Stuck-at faults.

e Transition faults.

e Coupling faults.

e Pattern-sensitive faults.
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6.4.2 Stuck-at Faults

Memory control logic or array appears to be stuck at one logic level either 1 or 0.
This is called stuck-at fault. Stuck-at faults model this behavior, as a signal or cell
appearing to be tied to power (stuck-at-1) or ground (stuck-at-0). Figure 6.7 shows
the state diagram for a stuck-at fault.

To detect stuck-at faults, it is necessary to force the value opposite to that of the
stuck-at fault at the fault location. For example, to detect all stuck-at-1 faults, it is
required to drive O s at all fault locations. To detect all stuck-at-0 faults, it is required
to force 1 s at all fault locations. BIST patterns generated internally for self-test will
generate such patterns and drive the memory circuit.
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6.4.3 Transition Faults

A memory fails if any of its control signals or memory cells cannot transition from
either 0 to 1 or 1 to 0. Figure 6.8 shows a high-transition fault, the inability to
change from logic O to logic 1, and a low transition fault, the inability to change
from logic 1 to logic 0.

Figure 6.9 shows the state diagram for a memory cell that functions correctly
when it is written 1 and read back 1. Test pass when it is written 0 and read 0, as the
transition is from 1 to 0. Due to its “zero to high transition fault,” when it is written
with 1 and read again, the test fails. However, a stuck-at-0 test might not detect this
fault if the cell was at 1 originally. So, to detect the transition fault, it is to be written
1, read 1, written 0, read 0, and written 1 again and read. If it reads 1, the test passes,
or else it shows that the cell has transition failure.

6.4.4 Coupling Faults

Memories also fail when a write operation in one cell influences the value in another
cell. Coupling faults model this behavior. Coupling faults fall into several catego-
ries: inversion, idempotent, bridging, and state. Figure 6.10 shows that inversion
coupling faults, commonly referred to as CFins, occur when one cell’s transition
causes an inversion of another cell’s value. For example, a 0-to-1 transition in cell_n
causes the value in cell_m to invert its state.

Figure 6.11 shows that idempotent coupling faults, commonly referred to as
CFids, occur when one cell’s transition forces a particular value onto another cell.
For example, a 0-to-1 transition in cell_n causes the value of cell_m to change to 1
if the previous value was 0. However, if the previous value was 1, the cell remains at 1.

Bridge coupling faults (BFs) occur when a short, or bridge (low strength connec-
tion due to metal deposit or polysilicon connection), exists between two or more
cells or signals. In such a case, a particular logic value triggers the faulty behaviour

Fig. 6.8 Transition fault . .
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rather than a transition. Bridging faults fall into either the AND bridge fault (ABF)
or OR bridge fault (OBF) subcategories. ABFs exhibit AND gate behavior; that is,
the bridge has a 1 only when all the connected cells or signals have a 1. OBFs
exhibit OR gate behavior; that is, the bridge has a 1 value when any of the connected
cells or signals have a 1 value. State coupling faults, abbreviated as SCFs, occur
when a certain state in one cell causes another specific state in another cell. For
example, a O value in cell i causes a 1 value in cell j. Coupling faults involve cells
affecting adjacent cells. Therefore, to sensitize and detect coupling faults, “March
tests” perform a write operation on one cell (j) and later read the cell (i). The write/
read operation performed in ascending order of address detects a coupling fault of
the addresses. This marching is repeated even in ascending addresses.
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6.4.5 Neighborhood Pattern-Sensitive Faults

Another way in which memory can fail is when a write operation on a group of sur-
rounding cells affects the values of one or more neighbouring cells, as shown in
Fig.6.12. Neighbourhood pattern-sensitive faults model this behavior. Neighbourhood
pattern-sensitive faults break down into three categories: active, passive, and static.

An active fault occurs when, given a certain pattern of neighboring cells, value
change in one memory cell causes a change in the value of the other memory cell.
The effect of change on the neighbouring memory cell due to writing a value in a
particular memory cell can create different kinds of faults. If the effect is to fix the
value of a memory cell to a particular value, then it is called a passive fault or static
fault. This effect can be so complex that the detection of these faults becomes
equally difficult and requires multiple special sets of algorithms to generate test pat-
terns to detect them. This opens the way for ongoing research to arrive at a variety
of algorithms to detect these faults.

6.4.6 MBIST Algorithms

There are memory test algorithms that can drive patterns to detect the commonly
occurring faults in memories. Many of these algorithms are implemented as logic
which generates the patterns and can test multiple on-chip memories. The most
commonly used algorithms are the March algorithms. There are many algorithms
used in MBIST, like advanced test sequence (ATS), walking 1 or 0 s, March A and
March B, March C, and checkerboard.

The March C algorithm detects the following multiple faults:

e Stuck-at.

e Transition.

e Coupling—unlinked idempotent and inversion, and other coupling faults on bit-
oriented addresses.
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6.5 ROM Test Algorithm

The ROM test algorithm provides address and control circuitry fault detection. This
algorithm reads the values from each address of the memory in increasing order,
one word at a time, as shown in Fig. 6.13. To determine the pass/fail state of the
memory, the circuit inputs the values read from memory into a multiple input signa-
ture register (MISR) and compares the signature against the known good value for
the ROM.

Programmable memory BIST (MBIST) insertion is the process in which mem-
ory BIST logic is inserted that allows for control, testing, and diagnostics of the
memory cell instances via IEEE 1149.1 or 1149.6 JTAG control or direct pin access
control. Programmable memory BIST logic permits memory cells in the SoC inde-
pendently from system modes. Insertion of the PMBIST logic is customised for
each design using a configuration file.

6.6 Power Aware Test Module (PATM) Insertion

PATM insertion inserts overriding control logic into the design’s power-manager
control block(s) in order to stabilize the power-manager control pins to the switch-
able power domains during test. PATM logic is inserted into the design’s power-
manager control block(s) for the power domains defined in the UPF file. These are
used to generate patterns for self-testing. This reduces the dependence on external
automated test equipment (ATE).
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6.6.1 Logic BIST Insertion

Logic BIST similar to MBIST, permits self-testing of SoC logic structures without
the need for ATE. It involves insertion of the BIST logic, which automatically gen-
erates a pseudorandom pattern generator (PRPG), which is also called a shift regis-
ter sequence generator (SRSG), and the multi-input signature generator (MISG) to
capture the response of the patterns fed into the core. It is essential to ensure that the
PRPG and the MISR generators generate unique patterns by suitably using the right
set of generator polynomials and initialization sequences. The basic architecture of
the LBIST is shown in Fig. 6.14, which is also called “self-test using MISR” and
parallel SRPG (STUMP). The pseudorandom pattern generator (PRPG) generates a
pattern which is shifted into the scan chains, and the patterns that are output through
the scan chains are compared with the generated pattern, and pass-fail status is indi-
cated through signatures. The signature can be read out by the direct access inter-
face or through the JTAG TDO lines. Depending on the requirements for a SoC,
both or either options can be provided to perform the LBIST test on a SoC.

The JTAG-based LBIST uses support for two instructions: RUNBIST and
SETBIST as defined by IEEE 1149.1. The RUNBIST command uses internally gen-
erated patterns which are fed into the scan chains and the results are shifted out of
the scan chains, to the MISR generator, which generates the signatures for multi-
input sequences it gets from the scan chains. This MISR signature is either read out
of the TDO line of JTAG or through direct access to the external pattern reader cir-
cuit. The difference between RUNBIST in JTAG mode and direct access mode is
the external interface. The RUNBIST instruction, an 1149.1 IEEE instruction,
enables the LBIST process. When RUNBIST is loaded in the instruction register
(IR), the TAP controller state machine initiates the BIST process. RUNBIST acts as
a select line. RUNBIST enables data to enter the SoC core from the BIST control-
ler’s PRPG, thus allowing the shift counter’s value to control the shifting of the data
through the STUMPS channels as shown in Fig. 6.15.

The shift counter begins at a state of all zeros. When RUNBIST executes, it
counts upward until it reaches a specified limit corresponding to the length of the
longest STUMPS channel. Each time it increments, data in the STUMPS channels
shifts. Upon reaching this limit, the STUMPS channel data shifting stops and the
BIST circuitry disables the scan enable line. This allows capture of system data in
the scan cells. The shift counter then resets again to all zeros. It repeats this process
for each pattern the PRPG applies to. Each time the shift counter resets to 0, it sig-
nals the pattern counter to decrement its value. When the RUNBIST instruction
executes, the BIST controller loads the pattern counter with the number of patterns
that the PRPG is to generate. Each time the shift counter resets to 0, the pattern
counter is decremented by one. When the pattern counter reaches zero, this indi-
cates that the PRPG has finished generating and applying patterns. To follow
RUNBIST instruction rules, a zero value in the pattern counter triggers the BIST
controller to disable the LFSR clocks. This ensures a stable final MISR signature in
a situation where tests running simultaneously on different chips require different
numbers of patterns for testing.
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The direct access interface will contain reset and an enable/disable port for
LBIST. It uses the same JTAG macro for the tap controller functionality as the
instructions defined in the JTAG macro. The SETBIST instruction permits the feed-
ing of an externally generated pattern of choice based on the requirement. LBIST
test function requires a LBIST clock generator for shifting out the patterns. One has
to keep in mind the need to include compression logic to minimize the area over-
head due to the LBIST logic. The standard DFT tools support adding the LBIST
circuitry to the SoC. The LBIST insertion flow is shown in Fig. 6.16.
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6.6.2 Writing out DFT SDC

DFT SDC involves the writing of three types of constraints from the DFT phase of
the SoC design. They are: SDC file with DFT mode disabled (NON DFT MODE),
SDC constraint with DFT mode shift where the test patterns are shifted (DFT
SHIFT MODE), and SDC constraint for capturing the response patterns from DFT
logic (DFT CAPTURE MODE). It is essential to verify all the three constraints
before they are finally used for DFT verification or synthesis.

6.6.3 Compression Insertion

The length of the scan chain poses a limitation on the depth of the test pattern to be
held in ATE. In practice, the scan chains will be around 2000 flip-flops per chain.
Today’s SoC will have multiple scan chains to cover all the sequential elements. The
test time on ATE is proportional to the number of scan chains and the number of
scan cells in each chain. Hence, it is always preferred to adopt techniques to reduce
the test times. The famous techniques adopted to reduce the test time are the inser-
tion of compression logic to build internal scan channels, thereby reducing the ATE
test times and the test pattern sets used to verify the design. Scan compression builds
shorter internal scan channels from the top-level scan chains, thereby reducing the
ATE test times and test data volume of the pattern sets. The compression logic is
inserted as a compression macro with additional scan-multiplexing logic to define
the internal scan channels.

6.7 On-SoC Clock Generation (OSCG) Insertion

Scan test is generally conducted at a very low frequency compared to the operating
frequency of the SoC, which will be very high in the order of hundreds of MHz to
multiples of GHz generated by a PLL internally. Though low-frequency tests get
passed, there is a possibility of the logic failing at the operating frequency of the
SoC. Feeding high frequency from external signal generating sources to the SoC for
testing at the actual operating frequency is not possible because of the limitation of
the normal pads, which cannot pass high-frequency signals. A concept called “at-
speed” testing is adopted to test the SoCs at their operating speed. This involves
insertion of the on-SoC clock generation (OSCG) logic. This avoids the additional
expense and trouble of supplying high-speed clock signals from the automatic test
equipment (ATE) and the use of special differential pads for the SoC. Typically,
today’s SoC contains PLL modules that generate high-speed clocks internally. The
inserted OSCG logic is programmable to allow a certain number of these high-
speed pulses from the on-chip PLL to be applied to the clock domains being tested
using delay test patterns.
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6.8 Challenges in SoC DFT

Today’s SoCs impose many challenges for testability due to their special features
and design styles. As asynchronous design blocks are not fully testable, most of the
design styles using basic synthesis algorithms with standard cells and the FPGA
architectures require synchronous design style to ensure that they are testable.
Synchronous designs are more predictable. During standard gate array designs, syn-
chronous design is enforced as coding guidelines to ensure that they are testable. To
ensure design for testability, there are commercial tools available which, through a
set of design rules, check the design and pop out violations. These tools ensure that
the design is testable, manufacturable, and predictable in terms of functionality. It is
based on the scan ability test run on synchronous designs. Design containing loop
logic generally poses testability challenges. If the output of a combinational logic
circuit is fed back to one of the inputs, it is termed a combinational loop, as shown
in Fig. 6.17. Such circuits in the design netlist are a result of bad RTL coding prac-
tices. Such paths are to be broken by registering the output so that the combinational
loop is broken and yet the functionality is met.

If the feedback path, that connects output signal to the input signal of any part of
the circuit, passes through a sequential element like a flip-flop or latch, it is
called a sequential loop. The design blocks with sequential loops are not testable for
manufacturing defects using DFT techniques. The tools which test the testability of
the design identifies such structures from the RTL models and issue errors and
warnings to indicate that they are not testable.

6.9 Memory Clustering

SoCs typically has many memories of different sizes distributed in different mod-
ules. It is possible to add common MBIST structure to a group of memories by
clustering them if they are of the same type, operate on the same frequencies, and
are physically located close to each other. This helps to save the DFT overhead in
terms of silicon area.
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6.10 DFT Simulations

Once the DFT logic is inserted, it is necessary to verify the inserted logic and test
mode functionality like the boundary scan, the scan tests through JTAG, and the
BIST on memory and logic. Most of the commercial DFT tools write out the test
environment, the test patterns, and the run scripts for running simulations and veri-
fication. They use fault models for generating test patterns to propagate and derive
the expected responses from the DUT. If the expected response is not detected,
the failure is flagged and the time is recorded. The same patterns are used for deriv-
ing ATPG vectors.

6.11 ATPG Pattern Generation

Once the DFT rule checking passes, the design with scan chains is fed to the ATPG
tool to generate the test patterns. Design rules for DFT typically confirm that the
scan patterns fed into scan chains are shifted out of scan outputs properly. If there
are multiple scan chains, they are shifted out in parallel simultaneously. This is
called the parallel scan test. The test patterns generated for running DFT simula-
tions for scan and boundary scan are to be converted to a special format to enable
regeneration as test patterns from automatic test equipment (ATE) in waveform
generation logic (WGL), which is an ASCII file used to extract the waveform and
edit and plot the information from waveform database (WDB). The test patterns in
WGL format are required to test the fabricated dies using the testers at wafer and
chip level.

6.12 Automatic Test Equipment Testing (ATE Testing)

Conventional DFT testing uses external test patterns in WGL format as stimulus,
and an automatic way of applying a set of the patterns in a controlled manner to the
SoC, knowing its IO pins and their physical locations and other details by the tester.
The tester examines the device’s response, comparing it against the known good
response stored as part of the test pattern data. The effort at this stage is always to
reduce the ATE test times by optimizing the test patterns but still sorting only the
good chips from the lot. Some of the popular methods used to minimize the test
times are at-speed testing using an on-chip high-speed clock for testing, scan com-
pression, and self-testing methods.
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Chapter 7
SoC Design Verification

7.1 Importance of Verification

First-time success and field success are absolute requirements of SoC designs,
because of the exorbitant cost of development and fabrication. It is verification at all
stages of design and development, that guarantees this. For decades, people have
worked to make SoC verification effective and efficient. The most effective metric
to assess the effectiveness of verification is the number of respins the SoC design
takes to pass in the field. SA study on functional verification by Wilson Research
group 2020 [1] claims that the percentage of new SoCs which have achieved first-
time success is 32% which is alarmingly low. Added to this, the growing complexity
of the SoC designs demands efficient verification methods to improve these statis-
tics. This demand for effective verification for ASIC/SoC designs, which was seen
during the middle of the year 2000, started devising many innovative methods to
verify SoC designs, but there is still scope for more.

SoC verification is the process used to confirm the functional correctness of a
SoC design. Aggressive time to market schedules and correct first-time require-
ments (SoC design working as intended when it is fabricated for the first time is
called a first-time requirement or first-time success) exerts phenomenal pressure on
the system verification at the design stage. A typical SoC design cycle, starting from
specification to design tape out ranges between six months to three years depending
on the technology, the complexity of the system, and the availability of the building
blocks of SoC design. The fabrication process, packaging, ATE testing, and getting
engineering samples for field validation (where chips are delivered to customers for
product trials) typically take 6 months. Therefore, all, the SoCs are available for
production only after the engineering samples are validated in the identified product
use case scenario. If this is successful, SoC design is considered for mass produc-
tion. This is the first-time the design has been successful (first-time success). Failures
in any of these steps of the development cycle impact the design time exponentially,
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sometimes requiring new metal tape outs with design corrections. Another driving
factor for making the design work the first time is the fabrication cost of the nano-
meter technology. The typical fabrication cost of a 36 sq.mm. chip design in 40 nm
CMOS FinFET technology is approximately 800000 to 1 million USD. High nonre-
curring engineering (NRE) and fabrication costs incurred during the engineering
sample development of SoC are to be amortised over the production in large num-
bers. So, if the NRE requires multiple tape-outs for the engineering samples, then it
may impact business to such a large extent that it may not be viable at all commer-
cially. Hence, first-time success is absolutely necessary in system on chip develop-
ment. The feasibility of SoC design verification depends on identifying a set of
“most common use case scenarios” of the system at the pre-silicon stage. This is a
very complex and challenging phenomenon, as there can be innumerable use case
scenarios. For example, one can easily imagine the innumerable use case scenarios
of a smartphone mobile SoC with the primary function of a talking phone. But a
smart mobile phone is used for many applications such as sending messages, shop-
ping, tracking human health, banking, and infotainment. There will be a large num-
ber of application scenarios to test and validate the mobile SoC imagining of these
application scenarios to identify and validate them. The cost of debugging the issue
in SoC increases by a factor of 10 as the design progresses from one phase to the
next in the development cycle. That is, the verification cost at the design phase is ten
times less expensive than the verification of the same function at the wafer stage,
which is ten times less expensive than verifying it at the chip stage. This is ten times
less expensive than verifying it in the field at customer site. This is due to the higher
debug access and the tool support the designer gets to the SoC design during the
design than at advanced stages of development. Hence, a set of critical scenarios
that are close to the actual applications’ use cases are identified and targeted during
the pre-silicon stage to get good confidence of first-time success of the SoC. Designing
a SoC is done by integrating design blocks or IP cores of different types (soft, hard
cores) which further challenges the design verification. The SoC design process also
involves a number of design transformations from RTL to netlist and then to layout
structures, which are then converted to mask data as shown in Fig. 7.1. When design
goes through these transformations, it is required to verify that the design intent is
retained at all levels untill it is fabricated. It is only SoC design verification that can
guarantee it.

Design Tapeout

S0OC Design SOCRTL S0C Design

Specifications Design Mask database

Fig. 7.1 Design transformations
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To summarize, the reasons why verification is an important for SoC design are as
follows:

» Exorbitant cost of fabrication demanding first-time success as multiple respins
may make it commercially nonviable.

» Cost of verification increasing by a factor of 10 as the design progresses in devel-
opment cycle. So early verification will boost confidence of getting the SoC
design first time right.

* Since the SoC design involves series of transformations of database using EDA
tools, it is essential to verify that these transformations are implemented correct
which is done by verification.

7.2 Verification Plan and Strategies

For the first-time success (SoC working as intended when it is fabricated for the first
time) of the VLSI SoC design, it is important to adopt many methods of verification
at the design stage. Different types of verification techniques used are simulation-
based verification, formal verification, timing verification, FPGA validation, and
hardware emulation and validation. Verification by simulation was the only tech-
nique followed in the past. But with the growing complexity of systems, it is neces-
sary to use every possible way to verify SoC designs.

It is difficult to define the condition for completion of design verification as it is
almost impossible to simulate all the design scenarios of the SoC designs. Consider
a design example of a single flip-flop which has two states; the number of test pat-
tern required to test the flip-flop is 4. The ARM Cortex M4 core has 65 K gates in
65 nm technology and the gates can have multiple input-outputs. Just to simplify the
discussion, assuming all gates have only two states, imagine the number of patterns
required to test ARM cortex M4 core. It will be 65 x 1000 x 4 = 0.26 million pat-
terns. Just simulating all of them (without considering the problems of accessing
them from primary input-outputs, finding the test patterns for each of them, etc.)
using fastest of computer multiple times at different design stages is practically
impossible (Fig. 7.2).

At the system level, also, identifying all the scenarios is very challenging. This
could be because of the inability of the prediction and visualisation of the use case
scenarios itself or may be due to the requirement of some more models or modules
in the environment to realize it. It could be a full software stack, or a hardware plat-
form on which the entire design database is ported, or a computational system infra-
structure for the simulation. Hence, it is required to define, as the scope of pre-silicon
verification, realizable scenarios as the verification test environment and a set of test
cases. This can be approached in many ways:

e Top-down approach.

e Bottom-up approach.

* Platform level verification.

e System level or transaction level verification (TLV).
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Fig. 7.2 Complex use case scenario of SoCs is difficult to model during design stage

Top-down level approach: In this approach, SoC is verified from the top most
level of hierarchy for interfaces and then continued to the next lower level of hierar-
chy till the smallest leaf level design element is verified. Traditionally, this approach
was used as a verification plan when the SoC design had a single or two levels of
hierarchy.

Bottom-up approach: This is the most commonly used approach in design verifi-
cation. It starts with the verification of smaller design blocks; verifying the small
block is easy and practical. Also, finding bugs and fixing them is easier in block
level simulations. This is because it is easier to trace the signals back and forth in
the smaller design to debug an issue if one is found. As a number of blocks are veri-
fied, they are integrated to form the top module of the chip, which is verified by a
separate top-level test setup. For example, the cores in a SoC consisting of a UART
core, a USB core, and protocol bus interface cores are verified individually, core by
core, first and then verified at the chip top level.

Platform level verification: If the design is based-on standards, like the USB
device core, it is good to verify it on the standard platforms where a standard peer
device like a USB host device is mounted. Similarly, a SPI slave core can be verified
on the platform with a SPI master device. This will also confirm interoperabil-
ity issues.

System interface-based or transaction level verification: If the SoC is protocol
based, it is required to build the verification setup with a standard verification IP
(intellectual property) core by monitoring the responses to the transactions. For
example, the Wi-Fi device core is verified in an environment with the WLAN access
point by observing the transactions between the two. WLAN access point core is a
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standard reference verification IP that is pre-verified and validated. This also proves
the interoperability of the cores when fabricated.

7.3 Verification Plan

Verification plan is the document that describes the plan for SoC design verification
and the tape out criteria. It explains how each of the functionalities of the SoC
design is planned to be verified. It lists the verification goals at the module level and
top level of hierarchy. It identifies the necessary tools, such as simulators, waveform
viewers, and scripts used for verification. It explicitly mentions the coverage criteria
for successful completion of verification as the finish criteria for design tape out.
Different verification coverages relevant for SoC design are functional coverage,
code coverage, and finite state machine (FSM) coverages. Functional coverage
quantifies the number of functions to be verified by writing the test cases and setting
the correct design response to be achieved by the simulations. There are tools that
measure the functional coverage by going through the test cases and function (fea-
ture) lists. Since the functionality identified and fed into these tools is done manu-
ally, there is scope for underfeeding the number of functionalities to get the high
percentage coverage. There is another parameter that is generally used called “code
coverage” which determines the number of RTL statements covered by the test
cases simulated on the design database at the RTL level. This helps to identify the
redundant code in the design database and facilitates code cleanup. The tools used
for code coverage are also capable of giving the finite state machine states covered
by test cases. This is a very important measure used to cover all state transitions by
adding appropriate test cases. The design verification coverage is used not only to
assess the status of design verification in some companies but also to assess the
performance of the verification engineers. The verification plan document lists cri-
teria of completeness of design verification in terms of design coverage. The remain-
ing gap in verification coverage is filled by other validation techniques like
FPGA-based validation, emulation techniques, and testing SoC designs on the
development boards. For example, if the functional coverage achieved by simula-
tion is 98%, the remaining 2% is attained by porting the design onto an FPGA and
testing the relevant functionality on the FPGA board or any other appropriate test
techniques. These methods may require additional circuits on board and on FPGA
to make it the test setup suitable for functional validation of the SoC design. It may
also require software running on board or system interfaced with it. Typical test
setups used for SoC verification in a simulation environment, an FPGA environ-
ment, and on a development on the board are shown in Fig. 7.3.
The major design details contained in verification plan are the following:

1. Definition of first-time success for the SoC design.
2. Critical application scenarios of the SoC. The requirement for the development
of test environment for SoC testing.
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10.
11.

Development plan for the functional verification environment and resources
required.

List of functional features to be verified at module level and at the top levels of
design hierarchy.

Main verification strategy for both blocks and top-level design.

Test bench modules at design RTL level:

(a) Bus functional module (BFM) and bus monitors.
(b) Signal monitors.
(c) Verification reference models.

FPGA level validation details:

(a) Requirements of FPGA board needed for SoC validation.

(b) Additional module needed for FPGA validation platform.

(c) Software modules required, software development, and debug platforms
will be developed based on this requirement.

Required verification tools and flows.

Requirement for block level simulation environment.

Regression test environment and plan of regression testing.

Clear criteria to determine the completion of verification such as target cover-
age, number of regression test vectors, and gate level simulation strategies and
expectations.

Design resources include verification engineers with their skill set, hardware

development boards, FPGA boards, software requirements, an EDA tool
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environment,(workstations and servers) simulators (number of licenses), and the
design infrastructure for verification. The strategy to verify the VLSI SoC varies
with the design complexity and the use case scenario of the SoC. Ideally, it is tar-
geted to emulate/simulate the use case scenarios using the test bench at the RTL
level or the FPGA verification plan or using the development board setup, or a com-
bination of any or all of them. Using these resources, the SoC design is verified to
gain a high level of confidence to predicting its success. The verification strategy
involves design partitioning for verification at the subblock level and chip top vali-
dation on FPGA boards.

7.4 Functional Verification

The goal of functional verification is to confirm that the SoC design functions as
intended in the functional scenarios as well as in its application scenarios. One use
case scenario can be mapped to one or many functional test scenarios. For example,
to verify the addition function of the block, there could be three test cases: the first
one that verifies the input operands the second one that verifies the output results
corresponding to the inputs, and the third one to check the carry operation of the
adder. Basically, SoC design contains multiple blocks of different functionalities,
interconnected with each other and/or a shared bus on which a number of blocks
interact, or a block functioning as per the standard protocol. In such cases, functional
verification of a SoC involves simulations of (a) block-to-block interface verifica-
tion, (b) bus contention verification, and (c) protocol and compliance verification.

7.5 Verification Methods

There are three types of design verification. They are black box, white box, and gray
box verification. SoC design is verified by adopting different combinations of these
methods.

7.5.1 Black Box Verification

This is a verification method where the internal details of the design implementation are
not exposed to the verification. Verification is done by only accessing the exposed inter-
face signals without accessing internal states or signals, thereby making it implementa-
tion independent. Obviously, the verification will not be visible to the design’s internal
implementation details or system states. This method is best suited to uncover interpre-
tation level issues like endianness checks, protocol misinterpretations, and interopera-
bility tests.
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7.5.2 White Box Verification

In this verification method, the test bench modules can access internal states, sig-
nals, and interfaces of the design. It is very easy to debug any design issue in this
because the test bench can literally trace the signal drivers with the expected in
mind. This method is best suited for checking low-level implementation-specific
scenarios and design corners where they can target the design for the scenario
that has potential issues and debug them. An example of such scenario is FIFO
pointer roleovers, counter overflows, etc. Assertions are best suited for checking
internal design behaviours in this method. This method is totally complementary to
the black box verification method.

7.5.3 Gray Box Verification

This method is intermediate between black box and white box verification tech-
niques. In this method, the test environment verifies the system at the interface lev-
els with IOs at the top levels with and on need basic (like for design corners) access
design internals for test and debug. Typically, first-level tests are targeted using
the black box method, and the functional coverage is assessed. To improve the cov-
erage, if required, through a white box approach, the test scenarios are tested.

7.6 Design for Verification

With SoC design methods moving toward the system or architectural level, it is
essential to verify the system functions at the transaction level across subsystems.
However, SoC design is predominantly integration of predesigned or pre-verified IP
cores, which is more like black box verification for the internal IPs. Also, the com-
plex SoC design is tending toward being verification friendly where the internal
states and critical signals are latched and made available for software to read through
the primary interfaces and hence predict the root cause of the issue. This will be
useful in “black box” or “gray box” verification. Functional verification is done dif-
ferently in different environments. In the RTL level, test bench and a set of test cases
are developed and simulated using the simulators to see if the SoC behaves as
intended. The functional correctness is checked by viewing the waveforms at the
interfaces or module/block level inputs and outputs.

In the FPGA-based hardware validation, the design under test in RTL form is
ported to the FPGA on the board, limited software is run, actual stimulus is fed to
the SoC input, and output is observed on the development environment.
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Fig. 7.4 RTL Test bench internal modules to simulate use case scenario of VLSI SoCs

On the development environment, the development platform based on the sub-
modules is designed and developed with interfaces as close as the final SoC and is
verified with some more complex software.

Test environment or test bench at RTL level represents the most likely environ-
ment in which the SoC is intended to be used. All the environments are developed
to accept the stimulus as close to the real-world inputs as possible. A typical RTL
test environment (also called test bench) is shown in Fig. 7.4. It is a closed system
as it represents a complete environment, including the input stimulus and output
controls through behavioural bus functional models (BFM).

SoC Under Test It is the SoC design whose functional intent has to be verified.

Peripheral Modules These modules are support modules which are required to
make the SoC under verification complete in the application environment. They are
the verification IPs or IPs of peripheral functions, like external memories, data con-
verters and real-time sensor models.

Input Stimulus and Bus Functional Model (BFM) The input stimuli represent
the input signals that the SoC under verification is fed with from the external world
in the real application scenario. It can be system design signals like the clock from
the reference crystal, the reset signal, sensor inputs, or data inputs from mod-
ules or verification IPs that are external to SoC. Generation of the stimulus from
different source as required by the SoC is automatic (when the reference clock is fed
to the PLL module, it automatically generates a system clock of the required fre-
quency for the SoC as configured) or semiautomatic with a manual trigger or con-
ditional. They are fed to the SoC design through the interfaces, following the timing
requirements of the design through the bus functional model (BFM).
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Output BFM and Checkers This output BFM captures the response of the SoC
through its output interfaces when a particular stimulus is fed to it. The response is
compared and written to a file to compare with the expected outputs, or checked for
expectations in real time. This module is either a checker with file compare capabil-
ity or a waveform database generator, while the SoC design is subjected to the par-
ticular scenario through test input conditions that the designer views on a graphical
viewer and decides the correctness of.

Continuous Monitors These are additional checkpoints in the environment
that are indicators of the correct functionality of the SoC. For example, in a timer
SoC that generates 1-s clock, it is easy to continuously monitor the 1-ms signal,
which is expected to tick continuously to generate a 1-s clock.

More advanced test environment implementable in advanced verification lan-
guages like system Verilog is shown in Fig. 7.5. In test environment, the test blocks
are very modular and the results are automatically checked, and a pass/fail decision
is taken, hence they are automation friendly. The test environment is capable of

SOC design Test
Configuration environment Test program
module interface
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v A
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Fig. 7.5 Automated test environment
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analyzing the design for functional, code, and FSM coverage. A brief description of
the modules of test environment follows.
SoC DUT: The SoC DUT is the SoC design under test which is to be verified.

Design and Verification Assertions The design under test and the verification test
environment can have assertions to improve the effectiveness of verification.
Assertions are the statements that are used to check the temporal relationship of
synchronous signals in the design for correct functioning of the module. The design
assertions, if supported, are tracked by the test bench checker module to see if it has
triggered or not and is assessed for correctness. For example, consider a part of
the logic design where a functionality is to check if the received packet is correct,
and the packet received is validated by the packet_valid signal. It is obvious that the
packet_valid signal should be set high whenever the packet_correct or packet_error
signal is generated. In this context, it makes sense to write a design assertion
that checks the co-occurrence of packet_error and a packet_valid or packet_correct
and packet valid signal, and if the assertion gets triggered, the design intent can be
verified. In the example shown, a design assertion is written to see if packet_valid
and packet_correct or packet_valid and packet_error signals don’t co-occur. If this
assertion is triggered, the design is faulty. This is shown in the timing diagram in
Fig. 7.6.

Similar assertions can be written at the transaction level of DUT transactions,
which are tracked for the correctness of the design.

- MU UL

Packet_valid

Packet_correct

Packet_error

Assertion

Fig. 7.6 SoC design logic with an assertion
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Clock/Reset Block Clock reset block generates the required clock and reset signal
as per the requirements of the SoC design.

Configuration This block sets the DUT and test bench in the desired configuration
in which the DUT has to be tested.

Stimulus Generator This module generates the input stimulus in the test bench.
Typically, this module generates signals in the required order and sequence as per
SoC functionality. It can be a complex IP verification.

Transactor/Bus Functional Module (BFM) The transactor or bus functional
module follows the interface specification to feed the stimulus to the SoC DUT. There
will be as many BFMs as there are bus interfaces. If the SoC design supports UART,
USB, and PCI Express interfaces, there should be a BFMs corresponding to each of
these interfaces that manages transaction compliance with these protocols.

Mailboxes These are communication mechanisms in system Verilog test bench
that allow messages to be exchanged between processes. The process that wants to
talk to another process posts the message to mailbox, which stores the messages
temporarily in a system-defined memory object, to pass it to the desired process.
Mailboxes are created with either a bound or unbound queue size. A bound mailbox
becomes full when it contains the maximum number of messages defined. A process
that attempts to place a message into a full mailbox shall be suspended until enough
space becomes available in the mailbox queue. Basically, mailbox is a technique
that synchronize different processes. The process can be checker as in this example.
Once the mailboxes have a predefined set of messages, they can initiate a checker to
check the content and decide on its correctness.

Checker Checker checks all processes, like comparisons of DUT responses with
expectations, assertions, and monitors to decide on the pass/fail criteria for a test
scenario.

Test Program Interface (TPI) This is the user interface, which accepts user inputs
as parameters and compiles options to trigger the test scenario and execute the sim-
ulations. The TPI supports many commands with optional parameters to execute the
simulations in test scenarios, one by one, and generates the consolidated result. This
is called regression tests.

The test environment shown in Fig. 7.5 can be extended to the most user-friendly
automated test bench, which can even send the test reports through emails to all
parties concerned to get their intervention.
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7.7 Verification Example

In this section, the simulation of a simple decade counter design is presented for
a clear understanding of the verification process.

Design functionality of the decade counter: The decade counter counts numbers
0,1,2,3,4,5,6,7,8,9, 0 at every active edge of clock when it is enabled. It is a
design requirement that an output signal be generated whenever the counter counts
5. The pin diagram and test bench of the decade counter are shown in Fig. 7.7.

The Verilog module and the test bench model of the decade counter is shown in
Fig. 7.8.

The test bench module of the decade counter is shown in Fig. 7.9.

The design file is saved as decade-counter.v, and the test bench file is saved as
tb_dcounter.v (.v represents the Verilog file) in the present working directory. To
simulate the design file, a simulator is used. Most used simulators are cycle-based
simulators. Cycle-based simulators sample the signals and compute the design
response every clock cycle. The simulator first analyzes the RTL code and elabo-
rates before simulating the design.

As the simulation is executed, observe for log messages displayed on the termi-
nal for errors and warnings. If there are any errors/warnings, it is required to correct
them in the design files. For the modules in the design example, there should not be
any warning or error and simulation terminates with success. If you observe in the
present working directory, there are many output files generated by the simulation
run. They are command log file, waveform dump file named decade_counter.vcd.
The decade_counter.vcd file can be opened with the waveform viewer tools. When
this file is opened in the waveform viewer tool, one can observe the logic state
changes on the input-output signals and internal nets. For more information on run-
ning the simulations and using the waveform viewer tools, one can refer to the
respective user manuals for help. The design behavior is verified by observing
design signals, clock, reset_n, and out_5, count_out. The waveform looks like the
one in Fig. 7.10.

The verification flow can be extended to the designs of any complexity. The next
design example explained in this section demonstrates this. The verification of self-
synchronizing descrambler which uses scrambler design as verification IP in the test
bench is explained. Consider the design of a self-synchronizing scrambler with
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Fig. 7.7 Decade counter as design under test and decade counter test bench
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module decade-counter {
clock,
reset_n,
counter_enable,
out_5,
countupto9

}/‘
//input -output declaration

input clock, reset_n, counter_enable;
output out 5;
output [3:0] countupto9;

//Internal signal declaration
reg [3:0] counter;

wire out_5;
wire [3:0]  countupto9;

//Logic description

always @(posedge clock or negedge reset_n)
begin
if (reset_n == 1'b0)
counter <= 4'd0;
else if (counter_enable == 1’b1)
if counter < 10)
counter <= counter +1;
else counter <= counter;
else counter <= 4’d0;
end

//Output generation
assign countupto9 = counter;
assign out_5 = (counter==4"d5);

endmodule

Fig. 7.8 Verilog module of the decade counter design
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module tb-dcounter;

//Internal signal declaration

reg clock;
reg. reset_n;
reg. enable;

initial

begin
#10 clock <= 1'b0;
#10 reset_n <= 1’b0;
#10 reset_n<=1'b1;
#10 reset_n<= 1'b0;

Enable <= 1’b0;
End
Initial #50 enable <= 1'b1;

always @
#10 clock <= ~clock;

//Module instantiation
decade-counter udecade-counter {

.clock. (clock),
.reset_n. (reset_n),
.counter_enable (enable),
.out_5. (out_5),
.countupto9. (count out)
b

//display commands for waveform generation
Initial
begin
Sdumpfile(decade_counter.vcd);
Sdumpvars(1, tb_dcounter);
end

endmodule

Fig. 7.9 Test bench module for decade counter
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Fig. 7.10 Simulation waveform of decade counter
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Fig. 7.11 Implementation of self-synchronizing scrambler

the polynomial g(x) = 1 + x"* + x¥. A self-synchronizing scrambler module is used
in communication to scramble the incoming data if it is a long sequence of zeros or
ones to have zero DC bias. The data is scrambled at the transmitter using the same
polynomial and descrambled to recover the original data transmitted at the receiver
end using the same polynomial. The functional property of the descrambler in the
self-synchronizing descrambler in that it does not need to be initialized by the ini-
tialization vector to achieve synchronization. The implementation is shown in
Fig. 7.11. Synchronization of scrambler-de-scrambler is defined as both the LFSRs
of scrambler and descrambler holding the same pattern, and hence, when the data is
fed to the descrambler, it can generate the input of the scrambler data.

The Verilog models of the scrambler and descrambler are shown in Figs. 7.12 and
7.13, respectively. The test bench file is shown in Fig. 7.14. The module under test is
descrambler. To test if the descrambler synchronizes to the scrambler, it is required to
have the descrambler LFSR reset to any initialization values. The random pattern is
fed through the scrambler, and the scrambled data is fed as input stimulus to the
descrambler. It is to be verified that the descrambler, at some point in time will be able
to decode the incoming data. One may notice that the test bench will not have any
ports, as this will be a self-contained environment for the module under test.
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//
//802.11B Scrambler

// Module Name : scrambler

// File Name : scrambler.v

// Function : This is a 7 bit scrambler for 802.11b

// Asynchronous and active high enable and active low reset signal
//
module scrambler (

clock, // Clock input of the design

resetn, //active low, asynchronous Reset input
enable, // Active high enable signal

bit_in, //Input data bit.

bit_out //Scrambled output bit.

); // End of port list

S mmm Input Ports

input clock ;

input resetn ;

input enable ;

input bit_in;
[/ Output Ports
output bit_out;

[ Input ports Data Type-------------------

// By rule all the input ports should be wires

wire clock ;

wire resetn;

wire enable ;

[ Output Ports Data Type----------------—

// Output port can be a storage element (reg) or a wire
reg [6:0] state out;

wire bit_out;

Y Code Starts Here
assign feedback = (bit_in * state_out[6] * state_out[3]);
assign bit_out = feedback;

// We trigger the below block with respect to positive edge of the
clock.

always @ (negedge resetn or posedge clock)

begin : SCRAMBLER // Block Name

if (resetn == 1'b0) begin

state_out <=#1 7'b1010101; //Striped start.

end

Fig. 7.12 Verilog model of scrambler module
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// If enable is active, then we tick the state.
else if (enable == 1'b1) begin

state_out <= {state_out[5:0], feedback};
end

end // block: SCRAMBLER

endmodule

Fig. 7.12 (continued)

The test bench consists of the following sections:

e The first section in the test bench will be the stimulus generation which includes
clock, reset, enable, and data generation.

¢ The second section is the scrambler block, which is used as standard verifi-
cation IP.

¢ The third section is the module instantiation.

e The fourth section is the output reader and waveform dumping for debugging
and user verification.

The test bench sections are shown in Fig. 7.15. A typical SoC test bench will
have multiple clock (OCC) generation blocks with standard PLLs, multiple VIPs as
needed, and control state machines that will enable each of these modules for mul-
tiple test scenarios. The output reader and waveform dump section can be complex
blocks that can automatically verify the correctness of the functionality depending
on the SoC verification requirements.

More simulation examples can be found in Chap. 11 “Reference Design.” Reader
can actually simulate the designs and verify the results to compare with sample
waveforms to check the correctness.

7.8 Verification Tools

There are a number of verification tools which are used for the functional verifica-
tion of SoC design. They are the following:

e Simulators.
e Coverage tools.
e Lint tools.

Among the above listed tools, simulators are indispensable for RTL functional
verification. A simulator is the tool that is executed to understand the design behav-
iour in most anticipated use case scenarios by using test vectors in a test bench. It is
a software that enables the study of SoC design states and its outputs in the presence
of user-fed stimulus for the required duration, called the test vectors. There are dif-
ferent types of simulators. They are cycle-based simulators, event-based simulators,
and circuit simulators. The SoC design to be simulated is called the device under
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/-
// 802.11B Decrambler
// Module Name : descrambler.v
// File Name : descrambler.v
// Function : This is a self-synching 7 bit descrambler for 802.11b
// asynchronous active low reset and with active high enable signal
//
module descrambler (
clock, // Clock input of the design
resetn, // active low, asynchronous Reset input
enable, // Active high enable signal
bit_in, //Input data bit.
bit_out //Scrambled output bit.
), // End of port list
Jf~mmmmmmmman Input Ports
input clock ;
input resetn ;
input enable ;
input bit_in;

[/ Output Ports
output  bit_out;

[~ een Input ports Data Type-------------------
// By rule all the input ports should be wires

wire clock,resetn,enable ;

[/ Output Ports Data Type------------------

// Output port can be a storage element (reg) or a wire
reg [6:0] state_out;
reg bit_out;

[ Code Starts Here
assign feedback = (bit_in * state_out[6] * state_out[3]);

// We trigger the below block with respect to positive edge of the
clock.
always @ (negedge resetn or posedge clock)
begin : DESCRAMBLER // Block Name
if (resetn == 1'b0) begin
//Self synching, so reset value can be anything. Only for
simulation.

Fig. 7.13 Descrambler Verilog module
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//This might cause a problem in synthesis.
state_out <= #1 7'bXXXXXXX;

end

// If enable is active, then we tick the state.

else if (enable == 1'b1) begin
state_out <= {state_out[5:0],bit_in};
bit_out <= feedback;

end

end // block: DESCRAMBLER
endmodule

Fig. 7.13 (continued)

test. The simulator, using certain commands in the test bench, can monitor and write
out the internal logic levels, states of the signals in the design module and input-
outputs during the simulation. This waveform output file is then opened in the wave-
form viewer tools that interfaces with the graphic debug environment. Different
simulators are used for verification based on the type of SoC design. Cycle-based
and event-based simulators are digital simulators. Most of the simulators used for
digital simulations are cycle-based simulators. Cycle-based simulators evaluate the
design for its logic states every cycle. Simulator cycles are of the order of
pico or nanoseconds to virtually emulate the concurrent behaviour of hardware for
the user. Above mentioned simulators are all cycle-based simulators. They are
called cycle-accurate simulators because they sample the SoC design at the input
edges of clock signal. An example of timing waveform from cycle-based simulators
is shown in Fig. 7.16. The cycle-based simulators are 10-100 times faster than the
event-based simulators and are used in majority of the SoC design verification.
Design verification, which uses cycle-based simulators, requires STA analysis as
the design is verified at clock intervals.

Event-based simulators evaluate the design whenever a logic change happens on
any of the nets in the circuit. These simulators are also called timing-accurate simu-
lators and are suitable for small circuit level verification. They provide a good debug
environment and also do not require timing analysis as the design is functionally
verified at all the events on all the nodes in the design. Event-based simulators
require large computing machines on which the simulation is run. This is because of
the explosive number of nets in today’s SoC designs, which will have large logic
transitions during simulations. Monitoring the large number of logic transitions on
the nets and evaluating them in all their combinations is practically impossible.
Debugging the fault in such a design is very difficult. An example of timing wave-
form of design simulated by an event-based simulator is shown in Fig. 7.17.

Typical tool flow in event-based simulator engine is shown in Fig. 7.18.
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‘timescale 1ns/10ps

//Module definition and signal declaration
module tb_top;

reg Clk;

reg Resetn;

reg Enb;

reg [7:0] Pattern;
reg [7:0] Dataln;
reg [7:0] DataOut;
integer errCnt;
integer CompFlag;,

reg Match;
wire  Din;
wire  Sout;
wire  Dout;

//clock generation
always #5 Clk = ~Clk;

assign Din = Dataln[7];

// Application of Stimulus
initial
begin
Clk = 0;
Resetn = O;
Enb= 0
CompFlag =0;
errCnt =0;
Match = 0;
Sdisplay("--------- Test Started --------- ")
#100ns Resetn = 1;

Sdisplay("--------- Sending Data Patternn : 0x55 --------- "),
repeat (10) @ (posedge Clk);
Enb=1;
Pattern = 8'h55;
Dataln = Pattern;
repeat (100) begin
@ (posedge Clk) #1 Dataln = {Dataln[6:0],Dataln[7]};
end
repeat (10) @ (posedge Clk)Enb = 0;

Fig. 7.14 Test bench file where the scrambler-descrambler modules are instantiated
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Sdisplay("--------- Sending Data Patternn : Ox11 --------- "),

repeat (10) @ (posedge Clk);
Enb =1;

Pattern =8'h11;
Dataln = Pattern;

repeat (100) begin
@ (posedge Clk) #1 Dataln = {Dataln[6:0],Dataln[7]};
end
repeat (10) @ (posedge Clk)Enb = O;
CompFlag =0;

Sdisplay("--------- Sending Data Patternn : 0x22 --------- "),
repeat (10) @ (posedge Clk);
Enb =1;

Pattern =8'h22;
Dataln = Pattern;
repeat (100) begin
@ (posedge Clk) #1 Dataln = {Dataln[6:0],Dataln[7]};
end
repeat (10) @ (posedge Clk)Enb = O;
CompFlag =0;

Sdisplay("--------- Sending Data Patternn : 0x33 --------- "),
repeat (10) @ (posedge Clk);
Enb =1;

//Application of Stimulus
Pattern =8'h33;

Dataln = Pattern;
repeat (100) begin
@ (posedge Clk) #1 Dataln = {Dataln[6:0],Dataln[7]};
end
repeat (10) @ (posedge Clk)Enb = O;
CompFlag =0;

Sdisplay("--------- Sending Data Patternn : Ox44 --------- ");
repeat (10) @ (posedge Clk);
Enb =1;

Pattern = 8'h44;

Dataln = Pattern;
repeat (100) begin
@ (posedge Clk) #1 Dataln = {Dataln[6:0],Dataln[7]};
end
repeat (10) @ (posedge Clk)Enb = O;
CompFlag =0;

Fig. 7.14 (continued)

7 SoC Design Verification
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Sdisplay("--------- Test Ended --------- "),
#10 Sfinish;
end

always@(posedge Clk)
begin
if(Enb) begin
DataOut = {DataOut[6:0],Dout};

#1 if(DataOut == Pattern) Match = 1;
else Match = 0;
end
else DataOut = 8'hXX;
end

//Application of Stimulus

//SoC module instantiations
scrambler u_scarmb(
.clock (Clk), // Clock input of the design
.resetn (Resetn), // active low, synchronous Reset input
.enable (Enb), //Active high enable signal
.bit_in (Din), //Input data bit.
.bit_out (Sout) //Scrambled output bit.
); // End of port list

descrambler u_descramb(
.clock (Clk), // Clock input of the design
.resetn (Resetn), // active low, synchronous Reset input
.enable (Enb), //Active high enable signal

.bit_in (Sout), //Input data bit.
.bit_out (Dout) // De-Scrambled output bit.
); // End of port list

initial

begin
Sdumpfile("tb_top.ved");
Sdumpvars(0,th_top);

end

endmodule

Fig. 7.14 (continued)

157
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Fig. 7.15 Descrambler test bench block diagram
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Fig. 7.16 Cycle-based simulator of the design
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Fig. 7.17 Event-based simulation example
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Fig. 7.19 Analog simulator snapshot of a design

Present day SoC designs, includes analog blocks, and it is required to verify them
as well. Analog blocks are verified individually using analog simulators. Analog
simulators use mathematical models to represent the analog functions of the design.
They emulate analog functionality by sensing and generating suitable responses to
the design. Few analog and mixed signal simulators are available. Figure 7.19 shows
a snapshot of the analog simulator response for a design.

Analog simulators are generally very slow and are not automated. They require
a designer to understand the design well and use the tool as an aid to analyze the
design. Hence, the detail verification of analog modules is done separately, and then
analog-digital mixed signal simulation is carried out just to verify the integration in
practice. Another important tool used in verification process or module in the simu-
lation is extracting coverage analyser. The coverage matrix gives insight to quality
or completeness of verification done on the design database. There are three types
of coverages: the functional coverage, code coverage, and state machine coverage.
Functional coverage is obtained by comparing and analyzing the test cases run on
the SoC design database and functionality feature checklist of the SoC design. Code
coverage is the metric that is extracted when simulation is run on the SoC design to
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track the code lines in the design that are excited. The state machine coverages give
information on state transitions in design FSMs due to the test case in the simulation
run. All these matrices help the verification engineers maximize the coverage met-
rics, and hence reach the design verification goals.

Lint tools check the SoC design at the RTL level against the rules set for different
objectives apart from the basic syntax and semantics of the HDL language. It is
a static RTL code checker. It checks by compiling the design and preprocessing it
for simulation, synthesis, and DFT simulations. Different design objectives where
lint is run are the basic compilation of the RTL design for simulation, synthesiz-
ability, and testability. There are standard rules defined by the tool for each of these
objectives. Each of these rule sets can be customizable or enhanced for SoC-specific
design goals. When executed on the design files, the tools write out log files with
detailed analysis of the design against the rules defined and alerts with warnings and
errors on the violations depending on the severity of the violations. nLint and HAL
are two of the few known verification tools used in design centers.

7.9 Verification Language

The languages used to model the test bench or test cases are more relaxed and flex-
ible compared to design languages. The main reason for this flexibility is the need
to create more randomness in the test cases, and this need not be synthesizable.
Verilog, being one of the oldest HDLs is also the verification language. Owing to
the change in design description methodology raised to higher abstraction levels at
the architectural level, a few of the verification languages like SystemVerilog, Vera,
and System C are emerging as major Hardware Verification Languages (HVLs) at
higher abstraction layers. These languages support class, object oriented, class
extensions, and temporal properties, which help define system level or transaction
level test functions easily. Of the mentioned languages, SystemVerilog is also gain-
ing popularity as a powerful assertion language, which is a major feature in verifica-
tion. But it also provides constructs designed to ensure consistent results between
synthesis and simulation. Also, there are simulation tools that support these lan-
guage constructs and can interpret the results and analyze them in terms of test
coverage. They support interfaces like direct programming interface (DPI) to high-
level software languages like C++ and Java, which enable the building of graphical
user interfaces (GUI) which can make the verification environment more generic
and effective at higher levels of abstractions up to the system level of hierarchy.
More details of these can be found in the language books mentioned in the refer-
ences. The simulator tools are now intelligent enough to ignore the common mis-
takes made by the designers and have the option of self-correcting them by notifying
the user of the warnings.
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7.10 Automation Scripts

Creating use case scenarios for the SoC is achieved by a set of complex test cases
with random stimuli as the real time scenario is random. When the stimulus is ran-
dom, the response to such a stimulus becomes hard to predict. So, the tests are typi-
cally carried out in such cases by predicting the end results or status or analyzing the
statistics and stability of the system and also at an intermediate state of the system
that is predictable. This requires some sort of coherence with the input randomness
and the system states, which are more or less changing. To map out this correspon-
dence, the test cases are automated. Automation means the test expectations, like
data integrity, status, and handing over control to the next random scenario, are
automatically controlled and evaluated. This is achieved through scripting lan-
guages. Most used scripting languages include Perl, Tcl, PHP, etc. Hence, the script-
ing languages are programming languages written for special run time environments
that automate the execution of tasks that otherwise could be executed by the user
one by one. These constructs are also understood by the EDA tools and hence can
be integrated in the test setup. Automation is also done for the analysis of large data
for integrity checks, statistical analysis, and running the test case in batches to get
the desired functional coverage. Test scripts are interpreted, and not compiled.

7.11 Design for Verification

Design verification guarantees the quality of designs by uncovering the potential
errors in system design and architecture. This is possible only when all functions of
the system are simulated as exhaustively as possible while carefully investigating
any possible erroneous behavior. This deserves the most time, attention, and com-
plete knowledge of design use cases. This, in most cases may become very challeng-
ing if design is complex. This demands that the design be verifiable. It is the designer
who has a complete understanding of the design implementation of a functionality.
If the designer identifies critical design corners and critical states of the design, veri-
fication can be targeted to monitor and check the same. Sometimes in designs, cer-
tain scenarios may require long simulation runs to hit the design corners, which the
verification engineer may not know. A simple example is the overflow generation of
32-bit counters, which run on a one second clock. This takes a long time to simulate
but may happen quickly in real hardware. In such cases, if the designer provides a
feature to preload a counter, 32-bit counter overflow is feasible. Such design tweaks
make designs verifiable for more scenarios. The designer must identify critical
design corners that can be addressed for verification. In addition, nonfunctional fea-
tures of the system like scalability, expansion, and flexibility require extra design
support to target them for verification. Such examples are memory address expan-
sion, access by software writing to registers or memories in nondefault mode, extra
configurations provided as an alternative to probable misinterpretation issues such
as little endian or big endian, etc.
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7.12 Assertions in Verification

Implementing assertions within a design requires a conscious decision to view the
design process differently. This is an additional design and verification statement
that is used to monitor this part of the design for its correctness. The assertion will
definitely reduce the debugging time and effort. Assertions essentially act as early
warnings during simulation can pinpoint failures that may either directly cause test
failures or not be detected by passing tests. Assertions on module interfaces can
quickly identify invalid behaviour that may be caused by a behavioural model or
improper use of the design (invalid register settings, invalid operating modes, etc.).
Such assertion failures indicate that a problem may be with the test bench, which
helps the verification engineer fix issues in the test bench. It helps to fix issues in the
design for its misbehavior. Design assertions help locate the root cause of failures
by looking at the incorrect functions shown by them. For example, the constraint
random simulations detect design issues at design corners at overflows and under-
flows of FIFO operations that are not typically targeted by the directed tests. Simple
assertions on FIFO interface signals detecting simultaneous read and write opera-
tion, number of reads exceeding the number of writes, etc. will help to find the root
cause of actual failures during the test scenario without lengthy debug sessions. The
bigger advantage of assertion is that it makes the design and verification test benches
reusable by preserving the design intent beyond the design and verification owners.

7.13 Verification Reuse and Verification IPs

Just like design blocks that are reusable, verification modules can also be reused
across generations of SoC designs. With multiple interface protocol blocks being
part of the SoC, like a few SoCs that have multiple USB cores, multiple SPI cores,
and multiple UART cores, the corresponding test modules can be reused in the test
benches. Bus interface modules (BFMs), and interface cores in test benches can
even be used to verify the number of SoCs that has the same functionality. This will
also address time to market reduction and the design productivity gap. With SoC
function becoming more and more complex, with many integrated cores complying
with many standards and required to be interoperable, it has been the practice in
the past couple of decades that the modules are developed as reference models,
ensuring compliance with standard specifications. These are called verification IPs.
These are pre-verified or certified for compliance with standard or protocol specifi-
cations. These can be licensed, or purchased on royalty terms from the IP develop-
ers. These VIPs are integrated as standard IPs in the test environments and a SoC are
tested against verification IP to prove compliance and interoperability. Reuse of
verification IPs is a common practice in SoC verification.
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7.14 Universal Verification Methodology (UVM)

Universal Verification Methodology (UVM) is an industry standard verification
methodology to define, reuse, and improve the verification environment and to
reduce the cost of verification. It provides certain application programming inter-
faces (APIs) for the use of base class library (BSL) components in the verification
environment making them reusable and tool independent. UVM-based verification
environment is flexible enough for various types of test creation, coverage analysis,
and reuse. The UVM standardization has improved interoperability and reduced the
cost of repurchasing, and rewriting intellectual property (IP) for each new SoC
design or verification tool is adopted to make it easier to reuse verification compo-
nents. Overall, the UVM standardization will lower verification costs and improve
design quality throughout the industry. More importantly, it can be implemented
using SystemVerilog which is the most commonly used in complex SoC design
verification.

7.15 Bug and Debug

Bugs are defects in the system. The quality of the SoC designs is directly dependent
on the defects or bugs hidden in it. As stated earlier, the cost of testing at a higher
design or development phase (RTL, physical design, layout, chip, board, system,
system in field) is atleast ten times higher than the cost of testing at lower
design or development phase. It is wise to uncover the defects or bugs at the earlier
design/development phases. Bug is the unwanted states or conditions for the par-
ticular scenario. It can be temporary or permanent. This can arise for many reasons.
The predominant reason would be the inability of the designer to interpret the
requirement as desired (refer to the famous tree swing example in the figure on the
requirement-interpretation issue) and due to lots of implicit, unstated requirements.
Design bugs can also seep through because of the interpretation of system require-
ments by the verification person and his ability to create test cases for the entire use
case scenario. It can also be because of human error and the tool errors that are used
to do the design transformations during the design stage. During the design and
development stage or in the field, it is essential to formally log and manage the bug
so that it is fixed and does not appear again and again (Fig. 7.20).

7.16 Bug Tracking Workflow

Formal bug tracking is very essential in the design/development cycle to make sure
the bug is understood correctly and is closed with the design fix if required. Due to
the complexity of systems and the multiple design and development teams working
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Fig. 7.20 Tree swing example demonstrating the interpretation issues of requirement and the
departmental barriers

on it, bug tracking tools are used. Tools enable formal tracking of the bug resolution.
The bug tracking tool supports reporting the issue (logging), assigning to design
owners, tracking the status of the fix, and solving and confirming that the issue is
resolved by reverification. Stryka, Jira, Mantis, Bugzilla, etc. are well-known ones.
Customized workflows are defined on this tool by providing different access rights
to the design team to log, view, assign, resolve, and close the issues on them. Some
design houses also use these to evaluate the quality of the designer and designer/
verifier. Typical example workflow for bug tracking is shown in Fig. 7.21.

7.17 Formal Verification

Conceptually, formal verification process is checking the response of the SoC
design for all possible values of inputs with 100% coverage. This is highly impos-
sible, to imagine the possible combinations of inputs, capture the response, and
analyze them all. This is because of human limitations, computational resource
limitations, and the time it takes to exhaustively verify the SoC design of complex-
ity seen today. Hence, this is not generally practised in SoC design methodology.
But the formal verification concept is used for checking the transformations the
design undergoes during the design cycle to complement the verification of SoC
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design by simulations. This is called equivalence checking. When the design under-
goes transformations from RTL to netlist, equivalence checks are performed to
compare the netlist and the virtually synthesized netlist of RTL and are compared to
verify the equivalence. The RTL design is referred to as golden reference design,
against which the netlist is compared. During the design processes like synthesis,
place, and route stages (physical design flow), the netlist is written out and com-
pared against the golden reference RTL design to check if the same design intent is
preserved by transformations. Well-known equivalence checkers are conformal
LEC, formality, sequential logic equivalence check (SLEC), and ESP.
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Fig. 7.22 FPGA development platforms

7.18 FPGA Validation

To get first-time success of the SoC design is necessary to gain good confidence in
the design that it works when fabricated, which is possible if you have a way to test
it in the design form, which is closer to the hardware. FPGA platforms provide that
setup for validation. Though these platforms are evolving to fit most complex sys-
tems, not every SoC can be directly ported on these devices due to the limited port
list, memory onto FPGAs, or obvious speed limitations. So, FPGA-based validation
is adopted in the functional verification methodology for functionally critical blocks
or performance critical blocks. Major FPGA players, Xilinx- and Altera-based
development boards are available for validation today. Another important advantage
of having the FPGA validation phase in the design/development stage is that if most
of the critical hardware can be ported on to the FPGA and with associated compo-
nents on board, the development system can be used for early development of the
software that can work on the final system on chip. A few of the FPGA-based devel-
opment boards are collated in Fig. 7.22.

7.19 Validation on Development Boards

Further to gain more confidence in the SoC design, one can develop their own devel-
opment platforms using all the discrete chip versions of the IP cores being used in
the SoC and the FPGA for the customized blocks and validate the almost complete
SoC in the design stage. Like FPGA platforms, these also serve as platforms for the
early development of software that can be finally integrated on the SoC.
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Chapter 8
SoC Physical Design

8.1 Re-convergent Model of VLSI SoC Design

VLSI SoC design flow involves stages where the design is converted to different
forms until the time it is taped out for fabrication. These design conversions are
from the design requirements or specification in document format to register trans-
fer level (RTL) as behavioural model to design netlist in structural form (gate-level)
to design layout as physical structures. The SoC design flow is seen as the re-
convergent model with multiple transformations. The transformations of a SoC dur-
ing the design process are shown in Fig. 8.1.

The final design database will be taped out (design file transferred to the fabrica-
tion house for further processing) as layout design file in GDS II file format. The
design layout database is used to generate mask input data generation. An advanced
software converts the complex design layout data to machine-readable commands
for e-beam or other laser equipment used for pattern generations used in making
masks. Mask databases include mask patterns corresponding to design structures,
structures for pattern inspection, and metrology and data patterns directly writable
onto wafers during SoC fabrication. It includes e-beam and photomask correction
data to compensate for the differences between design mask patterns generated and
actual patterns transferred on the masks. Mask data preparation is the first step in
device fabrication. Mask data is used for mask making or for reticles. The difference
between the mask and reticle is that a photomask is a pattern-transferring device
onto complete wafer, but the reticle transfers patterns onto a small part of the wafer
which must be stepped and repeated to cover the entire wafer. Photomasks and reti-
cles are used during different stages of fabrication processes for selective processing
on wafers. CMOS device fabrication processes include chemical vapor deposition
(CVD), ion implantation, etching, and physical vapor deposition (PVD). A brief note
on mask making is given in the last section of this chapter. The SoC design require-
ment is captured as a specification document called a chip architecture document,
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Fig. 8.1 SoC design representations

which is modeled using hardware description languages (HDL) such as Verilog/
VHDL or SystemVerilog, and then synthesized to gate-level netlist during logic syn-
thesis which is followed by a process of physical synthesis and then routed with
interconnecting all design elements and saved as design layout in GDSII format. The
transformations during design can be explained using re-convergent models. At
every stage of the design transformation, the netlist is extracted and compared with
the original input netlist model for equivalence checking, i.e., to check if the design
intent is retained. Figure 8.2 shows SoC design re-convergence.

8.2 File Formats

During the various stages of design transformations, the design database is stored in
different file formats. Table 8.1 lists various file formats and their relevance.
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Fig. 8.2 Re-convergent model of SoC design

8.3 SoC Physical Design

SoC physical design is the process of converting the SoC design netlist to design
layout and generating a design database in (graphic data system) GDS II format.
Physical design is also known as the place and route (PNR) flow of the design.
Physical design is an EDA tool-dependent and computationally intensive process
typically carried out on high-performance, high-speed workstations. The physical
design automation tools are required in design planning, with design exploration at
the physical level, placement and optimization, clock tree synthesis, routing, manu-
facturing compliance, and fabrication signoff closure challenges. Tools are required
to optimally place and interconnect many millions of transistors along with power
and clock feeders in overnight runs. There are very sophisticated EDA tools that are
used for PNR flow.
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Table 8.1 Different file formats encountered in SoC design

S1
no. | Design stage Format Description
1 | Requirement capture, | Document in docs, doc, | Chip architecture is documented from
marketing XLS market requirement, standard, and
requirement feature list
document,
architecture
document, or
high-level design
(HLD) document
2 | Design modeling Verilog/VHDL files: .v, | The SoC functional behavior is modeled
using hardware .vhd formats using HDL
description language
3 | Synthesis Gate level file in Verilog/ | The SoC design is converted to gate
VHDL file containing level netlist by the process called
logic gates and synthesis using synthesis tool. Synthesis
interconnections; .vg, tool can also write out liberty timing file
formats. lib files in the form of .lib. Liberty timing file is
the ASCII representation of timing and
power parameters associated with the
cell at various conditions. It contains
timing models and data to compute
input-output path delays, timing
requirements (for timing checks), and
interconnect delays
4 | Static timing analysis | SPEF file Standard parasitic exchange format
and signal integrity (SPEF) file is the IEEE standard format
checks for representing parasitic data in ASCII
format on interconnect in the design.
This is used by the static timing analysis
tool to compute path delays and for
interconnect data for signal integrity
checks
5 | Physical design Frame files, physical- Physical design tools accept design files
synthesis only library, new data in native formats represented as new
model (NDM) libraries | data model (NDM) models for
placement and routing. The frame files
are extracted from layout design as
physical only library without timing or
logic information. They represent only
the structure, area, and size information.
5 | Static timing analysis/ | SDF Standard delay format (SDF) is the

dynamic timing
analysis

representation of timing delays

(continued)
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S1

no.

Design stage

Format

Description

4

Floor plan and
placement, global
routing, clock tree
synthesis

DEF, LEF files

Design exchange format file written as
.def file by place and route tool contains
die size, logical connectivity, and
physical location in the die. Hence, it
contains floor planning information of
standard cells, modules, placement and
routing blockages, placement
constraints, and power boundaries
Layer exchange format (LEF) provides
technology information, such as metal
layer, via layer information and via
geometry rules. The LEF file contains
all the physical information for the
design

DEF file is used in conjunction with
LEF file to describe the physical layout
of the VLSI design

Power routing

Layout file, LEF file,
DEF file, 1ib file

Detail routing

Layout file, LEF file,
DEF file, 1ib file

Tape out

Layout file in GDS II
format

Industry standard database file format
for data exchange for layout artwork. It
is a binary file format representing
planar geometric shapes, text labels, and
other information about the layout in
hierarchical form. GDSII file contains
all the information related to SoC
design. Once the design meets all the
constraints for timing, SI, power
analysis, and DRC and LVS, it means
that the design is ready for tape out.
This GDSII file is used by fabrication
house for mask/reticle making

8.4 Physical Design Theory

A stick diagram is the basis for the physical design of the VLSI designs. Digital
circuits are represented by a set of color-coded sticks and their relative positions. A
stick diagram can also be in black and white colours with structural patterns in dif-
ferent layers of design elements represented as different shaded patterns.
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8.5 Stick Diagrams

A sStick diagram is the method to capture circuit topology and process information
with coloured layers in simple diagrams. They are the basis of layout representation
of design elements of digital circuits symbolically. The stick diagrams do have nota-
tions and rules as shown in Fig. 8.3, and the coloured lines depict different layers
which are also represented by different patterns of lines in black and white stick
diagrams. Rules define the interconnection methods.

Few examples of stick diagrams for circuits are shown in Fig. 8.4.

As stated earlier, the stick diagrams have information of circuit device structures,
their relative placements and interconnections of design elements and not exact
coordinates. SoC physical design layout database has complete information of
device structures, placement coordinates within the die layout, vias across the lay-
ers, and device interconnections. Mask data generated from the design layout is
used for making masks or reticles for VLSI device fabrication. Mask or reticle facil-
itates exposing different parts of the die layout to different processes during fabrica-
tion. Mask is used to transfer the design data onto the reticle. The reticle is used to
transfer the design structures on the silicon wafer and support step and repeat for
production of a large number of dies on a wafer. Some of the processes during IC
fabrication such as physical and chemical vapor depositions, diffusion, etching,
ION implantation, and metallization make use of these masks or reticles.

SoC physical design process converts the SoC netlist to the SoC layout as shown
in Fig. 8.5.

Complete SoC design conversion process is shown again in Fig. 8.6.

Detailed physical design flow is shown in Fig. 8.7.

During SoC physical design, material effects, process effects, and electrical effects
of the fabrication processes are addressed to fabricate functional and reliable devices.
Some of the issues such as electromigration effects of metals, coupling capacitance,
and inductance effects, cross-talk effects, and IR effects are addressed in this
design stage. Also, these design verification and analysis are done considering these
effects. For example, timing analysis must be carried out and violation must be fixed
considering the effects of interconnects, and electrical IR and antenna fixes are to be
provided for seeing the issues of process effects. Physical design verification (PDV)
is an important activity during physical design, which is dealt in detail in the next
chapter. Over the years, this flow has been defined, refined, and time-tested as the
physical design flow. The physical design tool or PNR tool consists of placer module,
router module, CTS, and optimization and extractor modules which use the most
advanced algorithms and also use analysis modules in conjunction to provide the lay-
out of the desired quality of results (QOR).

Definitions of most commonly used terms in the physical SoC design layout are
the following:

1. Track: The track is a virtual channel through which the P&R tool does signal
routing in an SoC design. Tracks are defined for each metal layer in both pre-
ferred and non-preferred directions, which are used by the router module. The
router routes the signal assuming the track to be at the center of the metal piece.
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notations and rules as shown in Fig. 8.3, the colored lines depict different layers which are also represented by
different patterns of lines in black and white stick diagrams. Rules define the interconnection methods.

Metal 1

poly
NAIT  e— e e

pdiff ———

Rule 1. When two or more sticks of same colour touch or cross each other form a contact.

Rule 2. When two or more ‘sticks’ of different type cross or touch each other there is no electrical contact. If
contact is to be represented, it has to be shown explicitly by a filled small circle.

Rule 3. When two or more ‘sticks’ of different type cross or touch each other there is no electrical contact. If
contact is to be represented, it has to be shown explicitly by a filled small circle.

Rule 4. In CMOS a demarcation line is drawn to avoid touching of p-diffusion with n-diffusion. All pMOS must
lie on one side of the line and all nMOS will have to be on the other side.

Fig. 8.3 Stick diagram rules
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Fig. 8.5 Circuit representation and layout representation

Behavioral; a=b+c;
by design coding z= ~(a.d);

Structural;
Netlist by synthesis

Physical;
Structures by Physical design

Fig. 8.6 Design transformations in VLSI SoC design flow

2. Row: This is the area defined for standard cell placement in the design. A row
height is based on the height of the standard cells used in the design. There can
be rows of various heights in the design based on the type of the standard
cells used.

3. Guide: A module guide is the guided placement of a logical module structure in
the design. The guide is a soft constraint. Some of the module guide logic can get
placed outside the guide, and other logical module logic can be placed in the
guide region.
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Fig. 8.7 Detailed physical design flow

4. Region: The region is a hard constraint in the design, and the design for the mod-
ule is self-contained inside the physical boundary of the region. However, it is
possible for outside modules to have some logic placed inside the region
boundary.

5. Fence: This is a hard constraint specifying that only the design module can be
placed inside the physical boundary of the fence. No outside module logic can be
placed inside the fence boundary.

6. Halo: The halo or obstruction is the placement blockage defined for the standard
cells across the boundary of macros.

7. Routing blockage: Routing blockage is the obstruction for the metal routing over
the defined area. They are hard blockages in the design layout boundary, where
no design element can be placed or routed.

8. Partial blockage: This is the porous obstruction guideline for the standard cell
placement. It is very helpful in keeping a check on placement density to avoid
congestion issues at later stages of design. For example, if the designer has put a
partial placement blockage of 40% over an area, then the placement density is
restricted to a maximum value of 60% in the layout floor plan area.

9. Buffer blockage/soft blockage: This is a type of placement obstruction in which
only buffer cells can be placed while optimizing or legalizing. No other standard
cell placement is allowed in the specified area during placement, but legalization
and optimization of some cells can be placed in this region.

The physical design process of generating the design layout is very complex and
can be studied under five headings: physical design setup, placement, CTS, routing,
and the design signoff. In the design setup stage, the SoC design netlist is imported
and floor plan is done after partitioning.
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* The design setup during physical design involve following activities:

Appropriately partitioning the design suitable for their placement and inter-
connections by routing.

The floorplanning.

Design environment setup for static timing analysis as per the design require-
ment with executable scripts as per the Static Timing Analyser (STA) tool.

* Placement stage involve the following activities:

Scan cell definition.

Placement of standard cells, module or block placements, macros, and the
input-output (IO) cells.

Planning and routing of the power and ground distribution network for
the design.

Reordering the scan cells.

Fixing design violations reported by static timing analysis.

e Clock tree synthesis (CTS) stage of physical design involve following steps:

Synthesising the suitable clock trees.
Fixing design timing violations resulted by clock tree insertions.

* Routing stage of physical design involve the following steps:

Routing globally the interconnects of design elements. This step is called the
global routing. This creates routing channels for interconnects.

Fixing design violations for antenna effects; inserting spare cells, filler
cells and corner cells.

Routing the actual interconnects in the design. This step is called the detail routing.
Optimisation of the design layout after routing the interconnects. This is
called the post-layout optimization.

ECO flow for any lately detected design issues. The issues can be functional
or timing violations. This step may use the inserted spare cells or doing alter-
native routing of interconnections.

Fixing timing violations resulted due to the routing, ECO fixing steps.

* The design signoff stage involve following steps:

Fixing routing issues in the metal interconnections.

Verification of SoC design for the original intent which could have disturbed
due to the P & R design processes. This is called the physical design verifica-
tion. This step consists of the following:

* Finally fixing the STA issues.

e Check the design for electric rules and resolve any violations. This is
called the electric rule check (ERC) stage in designflow.

e Check for process design rules and fix any of the violations in design. This
is called the design rule check (DRC) stage .

e Check for antenna and IR rules and fix all the violations if any.
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8.6 Physical Design Setup and Floor Plan

Physical design (PD) starts by checking all the inputs to the PD. The inputs are
design netlist, design timing, power, and physical constraints, and technology librar-
ies. When the design inputs are released for physical design, the design database is
analyzed with all the constraints specified. The SoC design will have different con-
stituents like analog core and digital core memories in the form of macros or inde-
pendent entities. Design is partitioned again if required, by considering placement
requirements. The main considerations during design partition for physical design
are design blocks using the same power supplies (same power domains) and proxim-
ity to the blocks interfaced and blocks with common design rules. Macros are placed
with special care in terms of guard bands (blockages) as per their guidelines and
accessibility to the interacting blocks. All analog blocks are placed together so that
they are supplied with common power and ground lines, and associated design
guidelines are followed in terms of isolation and load considerations. On-chip mem-
ory macros are placed centrally considering ease of access by multiple blocks access-
ing them. The external memory controllers such as the DDR controller are placed
near the layout boundary near the input-output pads for easy connection to 10s.
Each of the partitions in a design is a netlist, that can be laid down by the designer
using a PNR tool. Hard macro in design is retained as it is. Some of the main con-
siderations for partitioning the design-netlist during floor planning are the following:

e The design netlist is decomposed into smaller netlists of sub-blocks without
affecting the overall design functionality.

* Each of the design block gets connected to other blocks with minimum lengths
of interconnections. This ensures that the interacting blocks are planned to be
placed nearby.

e Maintain the minimum delay of circuit paths when the timing paths run across
multiple blocks meeting the timing requirements of design elements. For exam-
ple the input-output delays of the interfaces of interacting blocks must be kept as
minimum as possible.

e Maintain the minimum number of signals interfacing the blocks and limit them
to less than the set limit of maximum number of signals.

e Have subblocks of almost same area while partitioning the design. The esti-
mated areas of the sub block must be within the limit specified by the pro-
cess technology. A large number of subblocks of small size result in the easy
physical design but increases the cost of the fabrication.

It is a trade-off between physical design complexity and the fabrication cost of the
SoC design. Netlist is partitioned manually for time-critical part of netlists and others
using the tool. The design tool uses iterative probabilistic algorithms for dividing the
netlist into smaller blocks. Design partition is assessed for PPA with cost goals and
improved upon incrementally again and again till it is partitioned to a level manage-
able by the physical design tools and designer. The partitioning algorithms running in
the tool must be fast enough so that it is a small fraction of the complete physical
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design time. A few terms used in the design partitions are terminal pitch and terminal
count. Terminal pitch is the minimum spacing between two successive terminals of
the design block. This depends on the design rule as per the target technology. The
terminal count is the ratio of the perimeter of the partitioned block to its terminal
pitch. The number of signal nets which connect one partition to other partitions
should not be more than the terminal count of the partition. During partitioning, criti-
cal components are to be placed in the same partition hierarchy. If that is not possible,
a suitable physical constraint must be fed to the tool to place them closely. The con-
straints used for partitioning include area constraint and terminal constraint. The cost
function for the partition algorithm is the number of interface signals that cross parti-
tion boundaries and the number times the signals cross partition boundaries.
Figure 8.8 shows an example of a design partition.

The SoC physical design can be pad-limited or core-limited. If the number of
pads is too many, it is pad-limited. On the other hand, if pads are too few and there
is space between pads, it is core-limited. Chip planner module in the PD tool decom-
poses the SoC netlist into partitions which can be managed by the placer module of
the physical design tools with proper constraints. This results in minimizing the
interface signals across the partitions of the design netlist. Typically, auto planner
require information about the area utilisation, average aspect ratio of subblocks and
number of instances in the SoC design.

The area utilization is the ratio of the area which can be used to plan the design
structures to die size estimate in percentage, the aspect ratio is the ratio of die height
to die width, and a number of instances are a number of partitions in the SoC netlist.
The partition tool will also restructure the design netlist to be able to structurally
partition the netlist without breaking the functionality. After the design partition,
planner module of the P & R tool can write out the netlist that is to be checked for
equivalence with respect to the input synthesised netlist to confirm that the

Partition 1 |
Partition 3 - Partition 5
S (i
| [
Partition 2
— Partition 4 | Partition 6

Fig. 8.8 Design partition example
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Fig. 8.9 Display screen during floor plan

functionality is not disturbed. Figure 8.9 shows the placement of sample SoC which
consists of analog block, DDR controller, common on-chip memory, the digital core
with processor peripheral subsystem core, etc.

8.7 Floor Planning

Floor planning of the SoC is an important phase of physical design where the loca-
tion, size, and shape of the functional design blocks in soft (netlist phase) and hard
macros are decided. If the design is analog, custom, or mixed mode, floor planning
can also include row creation, I/O pad or pin placement, bump assignment (flip
chip), bus planning, power planning, and more.

Floor planning involves placing blocks, modules, and submodules according to
the prepared rough floor plan (which typically is in thoughts or paper). Present
day EDA tools of provide VLSI floor planners which guide floor planning based
on Al algorithms by performing space-time analysis of previous designs flows. The
following flow describes the most common sequence for floor planning:

e SoC die size estimate for the design is done to determine the approximate PR
boundary of the SoC. This can be done in two ways: One way is by listing all
the cells and modules in the design with the estimated areas from the synthesis
tools using unit area given in the library to arrive at the estimate of total cell area
on the layout. Approximate routing estimate (typically, 30-35% of the logic cell
area) is added to get the total die size. The other way to get the die size is by
importing the design into the P&R tool and by determining the fitness boundary
by repeated trials. Or use planner module in the EDA physical design tool to get
the best possible floor plan.
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* Placing the standard cells, partitioned blocks, macros, and IO cells of the design
netlist.

e Initial floor plan is done by the P&R tool. This gives a good indication of how the
blocks should be placed along with the orientations and grouped together in the
die area within place and route (PR) boundary. This is repeated to get the right
position of the design elements in the floor plan without overlaps and congestion.

* The design elements are placed for trial or virtual route is run to see if there is
any overlap among them or design congestion. Optionally, the core area is resized
at the block or module or die level to fit them. This is used as the guideline to do
the final floor plan by the physical designer.

e The placer module of the tool is then used to place all the miscellaneous logic ele-
ments such as design wrappers, power, and ground cells.

* Sometimes, the floor plan of the critical design blocks of any design hierarchy
and macros are generated separately. Iteratively, estimated die size, position and
orientation of design blocks, alignment and placement density and optimum size
is determined.

* The static timing analysis(STA) is carried out at this stage and every step from
this stage as the design advance in physical design. The STA is carried out on the
extracted netlist with extracted physical and timing constraints in every step from
now on. Any violation is fixed in the design.

* Plan of distributing the power distribution to all cells is carried out in this stage.

8.8 SoC Power Plan

The floor planning of the SoC design also involves a power planning. To power all
the design elements (standard cells, macros, and 1O pads), it is necessary to plan the
power grid. The power grid runs all around in the pre determined reserved paths
called channels on the design layout such that the power supply to design element is
tapped from the nearest point on the grid network. The power grid ensures the even
distribution of the power supply to all the design elements. The power grid consists
of the rings, stripes, and the rails. The ring carries power(VDD and GND) signals
around the die. The stripes connect VDD and GND from the ring to the rail connect
the VDD and GND signals to the standard cells as shown in Fig. 8.10.

If the SoC design requires multiple power supplies, many power grids are
planned. The power specification is defined carefully as it is the lifeline of the SoC
and is verified at every step to ensure every design element is well powered, before
the design elements are interconnected.
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Fig. 8.10 Power grid plan

8.9 Two-Step Synthesis of SoC Design

The design netlist and constraints are written out after floor planning. The design
netlist is used for logic equivalence check with the synthesis netlist as a reference
netlist to ensure that the process of the floor plan has not disturbed the functionality.
Any nonequivalences must be corrected so that the intended functionality is retained
in the design.

In two-step syntheses, the design constraint with floor plan information is used
for resynthesizing the design. This will help to meet the PPA goals of SoC design
easily. The floor plan is repeated with the newly synthesized netlist.

8.10 Placement

The floor plan for placement is finalized if it seems to be optimum considering the
feasibility of best interconnection of the design elements side. In this stage, the stan-
dard cells are placed in the rows created during the floor plan and the IO cells are
are placed in the 1O site or IO area of the design layout. To identify the correct ori-
entation of larger blocks or macros, the fly lines are used. The fly lines show the
connection of the macro or design component under consideration with the rest of
the logic in the SoC design. This gives visual help to find and optimize the intercon-
nects by placing them iteratively close to the blocks they are connected.
The steps involved in placement are the following:
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Preplacement: In this stage, buffers and antenna diodes are added at the macro and
block-level IO ports. Tap cells are added to avoid latch-up problems in the design.
Spare cells are added to make the design failproof with metal corrections required
in the further stage of the design process. Spare cells are used for last-stage
changes in design as a part of the electronic change order (ECO) flow to fix tim-
ing or functional corrections.

Coarse placement: This step analyses the feasibility of routing to identifying con-
gestions and probable timing issues in the design by performing the preliminary
routing of the design cells. It is also used to identy the suitable locations and
orientation for each of the design cell.

The legalization stage of placement of cells position them right considering the
geometry and layout rules of the design. This may create violations of design tim-
ing paths, that are to be fixed. This is an iterative process where incremental
optimization of the placement takes place until the design is entirely placed in
the core area of the layout without the timing or design rule violations.

The high fanout net (HFN) synthesis step performs synthesis of high fanout
nets (HFN) except for the clock and reset signals in the SoC designs. Control
signals like chip-enable, read_enable, write_enable in processor-based subsys-
tem designs are the examples of the HFNs. An HFN signal drives a large number
of load cells. There is a limit on the maximum number of load cells, an output
net can drive in terms of process technology. If any signal exceeds this number,
it is called HFN. The tool in this step, automatically adds the buffers in the path
of these signals while routing. The designer can declare an HFN as a don’t touch
signal in the constraint so that auto buffering is not done for such signals by the
tool. However, it is necessary to add buffers manually for HFNs to avoid func-
tional failures. The clock signal in SoC designs is an HEN. but, it is synthesised
separately during clock tree synthesis as it is critical signal affecting design tim-
ing. For this to implement, clock signal has to be declared as idle for not treating
clock signal as the HFN. If the clock is declared as idle signal, it will not be con-
sidered as an HFN, and buffers are not added to its interconnect paths.

In the placement optimization stage, all the placed cells are incrementally adjusted
for their positions to avoid further violations. The congestion analysis is carried
out for each of the design components. The defined blockages are used for the
congestion analysis during placement optimization. Placement blockages are
classified as hard blockages, and soft blockages. The hard blockage is an area of
the design core area where placement of the standard cells is forbidden. Soft
blockages are areas restricted to only a certain number of the standard cells or
specific types of the standard cells depending on the process technology. Even
areas around the places where the standard cells are placed can be blocked for
further standard cell placement to avoid routing congestion.

Scan chain reordering: The design netlist from the synthesis will generally have
connected scan flops. During the placement process, the scan chain connec-
tions order may get disturbed to the great extent. Sometimes, the connections can
be very lengthy. It is therefore required to reorder the scan chains after the place-
ment. The scan reordering step after the placement optimizes scan chain lengths
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in a SoC design to guarantee the routability. Scan reordering also helps to reduce
congestion by reducing the interconnect lengths, thus reducing the number of
repeater stages in its path.

Placement and optimization: The physical design (PD) tool helps the designer by
features like the auto routing and resizing of the functional blocks, keeping rela-
tive placement intact. The PD tool is used to do the fitment trials on the design
blocks by placing and adjusting the orientations without disturbing the intercon-
nectivity, and even resizing the design blocks, to arrive at an optimized die size
for the chip. Preliminary design analysis for congestion is carried out in this step.
There are two types of the design placements supported by the P&R tools. They
are congestion-driven and timing-driven placements. In congestion-driven place-
ment, the routing congestion is relaxed during logic placement in the layout, at
the cost of slightly higher interconnect length and overall silicon area. In timing-
driven placement, the tool tries to achieve best possible timing for the design.
There can be placement congestions, that need to be resolved. Major activities
performed in placement stage are the following:

* Placement of special cells called spare cells (a set of extra logic cells of all
types added to fix minor issues found during post-fabrication validation by
metal tape out), endcap cells, de-cap cells, and JTAG cells close to IOs.

* Reordering of the connections of scan cells.

* The congestion-driven or timing-driven placement and optimization.

* The High fanout net (HFN) synthesis: HFN are signals like reset and chip
enables which are required to drive large load or have high fanout. These sig-
nals are to be treated with extra buffers or cells of high drive strength to be
able to drive the load correctly.

* Power distribution network (PDN) is generated by ensuring all the design ele-
ments are properly powered. The PDN typically consists of power ring, cor-
ner cells, power rails, and stripes to connect to the power pins of the design
elements.

8.11 Physical Design Constraints

The size of the SoC design layout is initially calculated by importing design-nelist
into the P&R tool. For preliminary estimation of the logic core size, standard cells
and hard macros are considered alike. However, it is possible to determine how
densely objects can be packed by weighing the standard cell density separately from
the hard macro density: the standard cell density core size = (standard cell area/cell
utilization) plus macro area plus halo. For fences and regions, effective utilization
(EU = %) value is used. The EU value takes into account the actual cells and hard
macros in the fence region, placement or routing blockages, partition cuts, and other
floor plan constraints. It is a good practice to have right EU value before running
placement. Placement of design is finalised when it is optimum in size. As a good
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Fig. 8.11 Placed SoC design

practice, the hard macros are manually placed with appropriate orientation and
alignment to get the optimum core size. The typical display screen after design place-
ment is shown in Fig. 8.11. The modules are to be placed in the core area with
desired orientation and location as in figure. STA is carried out and if there are no
violations, design is considered ready for next stage which is clock tree synthesis.

8.12 Clock Tree Synthesis (CTS)

Clock tree synthesis (CTS) is an important design step in SoC physical design.
30 to 40% of the chip power consumption is because of the dynamic power con-
sumption by clock circuitry and good clock architecture supported by clock gate,
and clock tree implementation reduce power consumption and can yield good
design performance. No clock signal generated is ideal and there will be uncertain-
ties and variations in signal times. Clock uncertainties can occur due to many
sources. It could be because of the clock generation logic, the device abnormalities
in its path, power supply variations, interconnect effects, variation in operating con-
ditions, load variations, and coupling effect due to adjacent signals. In spite of all
these uncertainties, it is expected that with respect to clock, other signals such
as data meets the setup and hold requirements of the sequential design elements for
correct functioning. Hence, the goals of good balanced CTS, that meets rules
of clock tree, design rule checks (DRC) by minimizing the clock uncertainty and
meet the performance specification of the design. Most physical design tools are
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good at synthesizing the clock trees meeting the specified constraints, it is good to
have manual intervention to check and fix any residual timing violations and design
rule violations (DRV). It is an iterative process. Considering the criticality of clock
signal in the design, it is essential to check design for timing violations and DRV
violations. Additional checks are required on the derived clocks to identify the criti-
cal clock transitions, effects of parasitic capacitance in large fanout areas, congested
or dense areas. The design is to be checked for correct drive strengths on high fanout
nets and for clock balancing requirements. The CTS architecture is chosen, depend-
ing on the default rules set for the process technology. Clock buffer and inverters for
clock tree are selected suitably considering, clock transitions, capacitance loads,
and fanout values. While doing CTS, it is necessary to know clock structure and
balancing requirements of the design by knowing the physical placement of the
sequential elements. This helps to arrive at optimum clock tree for the design. Also
itis necessary to know the design for the requirements of shielding the design areas,
the need for fast clock transitions, areas requiring the cells with maximum capaci-
tance, and the those driving the maximum load, so that balanced CTS, with appro-
priate buffer/delay cells are synthesised. Clock power consumption is also a
consideration for choosing the appropriate CTS as this is the most power consum-
ing network in the design. CTS use clock buffers and inverter cells with equal rise
and fall times on input and output clock signals. If the clock network require bound-
ary cells for a module or block, and then appropriate boundary cells with the correct
buffers, and clock pins are added. These design details are rightly fed as constraint
to the CTS tool. A boundary cell is a fixed buffer that is inserted immediately after
the boundary clock pin to preserve the boundary conditions of the pin in the design.
Boundary cell cannot be moved or sized. Also, no other cells are inserted between a
clock pin and its boundary cell as shown in Fig. 8.12.

Clock Boudary
Pin Cell

Block/Module

Fig. 8.12 Boundary cell insertion to preserve the boundary conditions
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CTS run on the SoC design need clock tree design rule constraints which con-
tains definitions for maximum transition, skew requirements, maximum capaci-
tance, and maximum fanout. If the SoC design has multiple independent clocks,
separate trees are to be built independently for each of the clock, in which case the
CTS tool provides options to selectively block the tree on particular clock pin. This
is possible by adding “Don’t_touch subtree” like options in the constraint as shown
in Fig. 8.13. This preserves a portion of the subtree untouched.

The synthesised clock tree in CTS stage is optimised to get balanced tree. The
CTS module in the P & R tool does this by resizing the cells (changing buffer cells
of optimal drive strength), relocating the buffer cells, gates, and shielding. Typical
CTS on design is shown in Fig. 8.14.
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8.13 Routing

The next step after CTS is interconnecting the design elements by a process called
the routing. This represents the metal interconnections of design elements in the
SoC design layout. In the routing step, the input-output of design elements are con-
nected as per the design netlist and is rewritten as a updated netlist. An advanced
algorithm of the P&R tool is used to wire them one by one by metal as per the con-
nections in the design-netlist. The routing algorithms are often based on “random
walk” like algorithm where lines move from one grid to the other in random fashion
but in a particular direction.

In a SoC design, the routing is done at different levels. All the complex design
blocks requiring manual routing are done to start with the routing as a design pro-
cess. For example, routing in analog block is a part of in the analog physical design
is independently and manually carried out. The manual routing is the process of
computing the sizes (length and width) of the interconnections and are manually
drawing them using layout editor. Though it seems a trivial process, the complexity
grows as the number of interconnections increase that result in the routing conges-
tion. Therefore, the metal routing is done in many layers with wires routed through
vias through them to cross the layers. The interconnects are characterized by the
wire resistance and capacitance, that result in the signal delays, affecting the SoC
timing performance. The metal interconnects running in parallel have cross-talk
(electromagnetic coupling) when they are long on the SoC die. This issue is resolved
by a technique called shielding techniques or by maintaining a minimum distance
between them physical design verification is carried out to analyse the effect of rout-
ing on the design. The physical design verification is discussed in the next chapter.
clock. In addition to signal routing, the power ground (VDD GND) routing is done
through channels across the die so that all the design elements are fed with closest
power ground pair. The power supply VDD and GND are primary inputs fed from
external source and are internally distributed to all cells in the chip. They are distrib-
uted on power rings or power grids if the design is large, as shown in Fig. 8.15. The
power and ground rings will encircle the SoC design core and the connection is
tapped from this ring. The metal interconnect width of the power ring is decided by
the current carrying capacity of the interconnect based on the process technology
and the internal circuit in the SoC core; As the power feeders are drawn into the
cells, the width narrows down just to carry enough currents. This is called line width
tapering. Amount of tapering is determined by a combinations of factors and is sum-
marized in the layout rules and is used for automatic routing of power. Inside the
core, alternate power ground lines are laid as grids to tap the power to the logic cells.

Once the design routing of the critical blocks are completed, they are imported
as a library file that will be routed at the SoC level. The design routing of digital
blocks and top-level integrated SoC is finally carried out automatically by the P&R
tools. Tools have the capability of automatically routing the SoC designs of large
complexity. The list un-routed of input-output signals by auto router is written into
a log file and are highlighted on the layout editor display for the designer to route
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VDD — SOC Design Core —1

Fig. 8.15 Power ground rings

them manually. The designer for him to manually route them. In SoC design, the
process of routing process is carried out as a two-step process called global routing
and detail routing. In the global routing, the design elements which are easy to route
are all connected, and in the detail routing, the tool performs auto routing of all the
remaining signals (applying incremental routing steps iteratively) using alternative
paths and tool times. SoC design layout is complete when all the signals, power, and
clock are successfully routed. It is now ready for final test for manufacturability and
tape out, provided it passes the design verification. After the completion of every
stage of SoC physical design, viz., floor plan, placement, clock tree synthesis, and
global and detail routing, the SoC design netlist and the updated constraint file are
written for logic equivalence check with original reference design netlist file. The
logic equivalence check (LEC) and the STA must pass to advance the SoC design at
every stage of the physical design.

8.14 ECO Implementation

The design changes for fixing the functional and the timing issues in SoC design are
inevitable even in last stages of design as the design verification continues till
the design is taped out. Incorporating these changes in RTL is not practical when the
design is in the advanced stage of physical design. The critical design changes are
implemented during physical design as electronic change orders (ECOs). ECO files
are small handwritten netlist level corrections or synthesized netlist used to fix tim-
ing issues or logic corrections. These are manually written netlist file or logic cor-
rections in the design netlist file, that contains a specific set of standard cells and
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their interconnections. ECOs are acceptable in the SoC design as they generally do
not change the performance of the SoC design except that they correct the issues
found. The ECO file is imported into the physical design tool and the design
is routed as incremental place and route on the SoC design. The ECO design flow in

SoC design is shown in Fig. 8.16.

8.15 Advanced Physical Design of SOCs

Since today’s SoCs demand extreme low power and high performance, it is neces-
sary to control the otherwise automatic tool-dependent process of the physical
design very closely with manual intervention. That means tool runs can be tweaked
for the best performance of the SoC. The following sections describe some of the
advanced physical design techniques adopted in SoC designs.
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8.15.1 For Low-Power Consumption

Low power SoC design is the need of the hour. Physical design processes can
be refined or tweaked to realise very low power SoC designs. PD for low power uses
a combination of circuit design techniques, special cells in the technology library
and the P & R tool configurations. Power domain or voltage island is a floor plan
object, that has its own .lib and .lef files associated with it. By keeping the power
domain as the floor plan object, it becomes easy to implement special design ele-
ments like voltage level shifters or power gate for realizing low-power designs
using the physical constraints. The floor plans are implemented as multi-supply
single voltage providing different levels of isolation or multi-supply multi-voltage
domains. Reduction of power consumption is achieved either by shutting down a
power domain or operating it at a reduced voltage (voltage scaling). Power domain
shutdown is a technique in which an entire power domain is shut down during a
specific mode of operation. This results in the savings of both leakage power and
dynamic power in the designs. This is because the transistors in the functional
blocks are isolated from the supply and ground lines and are switched off when not
active. You must use isolation cells when shutting down power domains in order to
drive the interface signals to predetermined known states. In many cases, a design
in the shutdown mode operates at a single voltage throughout the design (an MSSV
design); however, the portion of the design that is shut off must be in a different
power domain. This is necessary because this portion must be isolated from the rest
of the system so that it can be shut off independently from the rest of the core logic.
In the power domain scaling (also known as voltage scaling), one or more domains
operate at a voltage lower than that of the other core logic. The power domain scal-
ing provides dynamic power savings, and may provide the leakage power savings,
depending on the threshold characteristics of the library for the scaled domain.
These power gating and voltage scaling techniques can be used separately or
together in a design to achieve low power. These techniques require special power
switch cell, on-chip power regulator cells, and level shifter cells.

8.15.2 For Advanced Technology

With the advent of the advanced technologies alternative to CMOS technology, the
physical design tools also offer a wide range of flexibilities considering the fabrica-
tion processes involved in those technologies. Support for standard FinFET technol-
ogy is explained in this section. FinFET device is the 3D structure compared to
planar MOSFET transistor as shown in Fig. 8.17.

Compared to the MOSFET, in the FinFET devices, gate wraps around the diffu-
sion FIN structure to gain more control on the channel current. This also promises
higher performance in terms of the speed at the same power level as the planar
MOSFET technology. Hence, designer can target higher speed for the same power
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Fig. 8.17 Planar MOSFET and FinFET structures

level or same speed at low power as that of the MOSFET designs. This requires all
the placable structures to be aligned to the FinFET grids to manufacture these
devices. So, the physical design tools support the FinFET grids with the fin to fin
pitch support and checks on the snapping to these grids and alignment of the place-
ment of objects with them. The tools have option to load the FinFET technology
grids if the target technology is to be supported.

8.15.3 High Performance

Some of the design blocks require manual intervention in the physical design to
achieve high performance in terms of the power, area, and the timing for critical
data paths in the SoC design. This is done using separate physical design constraint
(PDP) constraint during placement stage. In this case, the auto run flow is inter-
rupted and manual intervention is permitted to implement the design as per the
tighter data-path constraint for the specified performance manually by the
designer. The placement congestion issues, alignment issues, orientation, and posi-
tioning are decided manually knowing the performance impact. The data-path
design elements are read separately by the tool using a executable script and proper
naming convention to identify them. The cells in preferred data path placement
(PDP) are placed in separate area on the chip layout which is not considered for
automatic placement. The PDP cells are used separately as a placable object with
the permission to do the manual adjustments during physical design. The main
advantage of the PDP placement is that it ensures uniform routing for the PDP. The
PDP flow is shown in Fig. 8.18. Post routing the physical design verification proce-
dure till the design tape out remains the same as traditional approach.
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8.16 Photolithography and Mask Pattern

The main concept of SoC design depends on the possibility of creating the patterned
material on a semiconductor wafer as layers for controlling the current flow. This is
possible by the process called a photolithography. This enables transferring layout
patterns generated by the EDA tools corresponding to the desired functionality onto
the physical metallic structure onto the glass, which results in a mask or reticle. The
minimum feature size talked about in the VLSI terminology ultimately depends on
the resolution of the patterns that are feasible in the photolithography process. The
design output in GDS II format is converted into Caltech Intermediate Format (CIF)
which is used to create masks or reticles. The dimensions of the patterns on the
mask or reticle will be many times larger than the actual desired patterns on the chip
dimensions. This enables getting the finer dimensions on the wafer when processed.
The photolithography process depends on the philosophy of creating transparent
and opaque regions for selective processing of the planar regions on silicon wafers.
The chrome-based metallic patterns on the mask reflect the light source making it
opaque, while in the rest of the regions, the mask will be transparent to the light
source, hence the name photolithography. Each layer in the SoC design layout will
be transferred into a mask which is patterned separately. Hence, for a single chip,
there may be 8—12 masks corresponding to the layers required as per the fabrication
process. This is an extremely costly process, typically costing in the range of 500 K
to 1000 K USD. This is due to the microscale structure required to be fabricated on
the chip. The Chip fabrication process involves coating the semiconductor wafer by
photoresist material and exposing it to UV rays through the mask so that the photo-
resist will undergo chemical change which will become soluble in developer solu-
tion. This is similar to the photography process. By this process, the patterned
regions are selectively etched and the rest of the regions are hardened, forming hard
patterns on the chip. There are two types of photoresists: positive and negative pho-
toresists. When in positive photoresist, when illuminated (by UV rays), regions
become soluble in developer solution, but the unilluminated regions remain hard. In
negative photoresist, the illuminated patterned regions are hardened while the unil-
luminated regions are soluble. By one of these processes, the hard patterned layer is
formed on the chip and is selectively processed. This is repeated for as many layers
as required in the design layout. It is hence essential that the patterns in the layout,
during physical design, follow geometrical guidelines given for the fabrication pro-
cess. Violating these rules will result in nonfunctional chips. The layout tools pro-
vide the ability to translate these patterns back into schematic again. This is required
for the layout vs schematic (LVS) check to ensure accurate representation of the
desired circuit. The tools also extract the circuit schematic from the layout drawings
which include every electronic element and wiring detail as well as the parasitic
resistance and capacitance of every line. This extracted parasitic RC file (wire resis-
tance R and wire capacitance C file) is used in the verification of the electrical
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behaviour of the system on chip. On-screen layout structures from the EDA tool,
mask pattern photolithography process, and patterned metal region on the wafer as
an example of selective processing in IC fabrication are shown in Figs. 8.19 and 8.20.

For more information on detail fabrication processes, it is suggested to refer to
CMOS VLSI design books.
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Fig. 8.19 Design pattern transfer onto mask
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Fig. 8.20 Selective processing in CMOS fabrication process
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Chapter 9
SoC Physical Design Verification

9.1 SoC Design Verification by Formal Verification

VLSI SoC design flow involves the transformations of SoC design from one file
format to another during logical and physical synthesis. This is very well repre-
sented by the re-convergent model discussed in the last chapter. Debugging the SoC
design in netlist format is feasible for smaller complexity but for bigger designs, it
is extremely difficult to trace the root cause of the issues. Also, it is very difficult,
very time consuming, and practically almost impossible to simulate the gate-level
design for all scenarios. However, it is essential to check the design intent is retained
in all these design transformations. This objective is achieved by alternative design
verification methods such as static timing analysis and formal verification methods.
We dealt with in static timing analysis (STA) in earlier chapters. Formal verification
methods are dealt in this chapter as a part of physical design verification. Two types
of formal verification methods are model checking and equivalence checking.

9.2 Model Checking

System modeling is a process of identifying the system properties and representing
it as a set of mathematical equations or simulation reference models. SoC design is
then verified by comparing it with the system reference model. This is done in simu-
lation at the RTL level. When the design is in gate-level netlist format, it becomes
very difficult to verify it by simulations. An alternate way is to derive a common
database from the model and design and compare them for equivalence. For exam-
ple, consider a coffee and tea vending machine and different machine states as
shown in Fig. 9.1. The vending machine disperses coffee if a coffee button is pressed
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and Rs. 15 is inserted, and tea if a tea button is pressed and Rs. /0 inserted in the coin
slot. The function of the vending machine is modeled by logical equations by formal
methods. Different states of the machines are modeled.

Both the design and model are represented in Kripke structure and the properties
are represented in the temporal structure time-dependent (state machine) which are
input to the model checker and are compared for equivalence. A Kripke structure is
a graphical method to represent behaviour of the system, named after its inventor
Saul Kripke. It is a graph whose nodes represent the reachable states of the system
and edges represent conditions for transitions of the system state. The model is
treated as a golden reference against which the system design is verified. Any non-
equivalence is considered as a design issue and must be fixed. The concept is shown
in Fig. 9.2.
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Fig. 9.1 Coffee/tea vending machine, state diagram, and formulae representing formal properties
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Fig. 9.2 Model checking
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9.3 Logic Equivalence Check (LEC)

Logic equivalence check involves using the synthesized design as the golden refer-
ence against which transformed design extracted from EDA P&R tools is compared
for logical equivalence. The concept is explained in Fig. 9.3.

The method involves converting the reference design and the design to be
checked into netlist format using techniques like virtual synthesis, or by mapping
physical structures to device logic cells and interconnections and finding the equiva-
lence between two netlists. It involves comparing the netlist file extracted from the
physical design and the original design netlist generated by the synthesis process to
establish the correspondence and equivalence. The step-by-step process of LEC is
shown in Fig. 9.4. LEC is run at different stages. RTL versus gate level netlist LEC
is run after synthesis stage netlist vs reference netlist LEC is run after placement and
after design routing.

LEC tools have a very user-friendly graphical user interface (GUI) for design
debugging to understand the cause of nonequivalences. The tool cross-references
the nonequivalence points to the schematic and source code so that designer can
trace the logic path and fix the design issue. The tools can also be guided by a set of
commands mapping the compare points manually by specifying the same naming
conventions. LEC is run to compare RTL design and netlist or netlist versus refer-
ence netlist. Design is verified for logical equivalence whenever the design is
changed during the design flow.

Revised design Golden Reference
= under test RTL design
Debug & fix the issue in Revised #
design
? No. LEC pass?
Yes

Fig. 9.3 Concept of logic equivalence check
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9.4 Static Timing Analysis (STA)

Static timing analysis (STA) is covered in Chap. 5. Timing analysis is an important
physical design verification technique. It is run whenever the design is changed,
either at placement or routing or after the electronic change order (ECO) stage. It is
also run as a part of the design signoff procedure after the final layout with metal
fills and antenna fixes are done. The parasitics, the interconnect resistor, and
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capacitance (R and C) values, are extracted from the actual physical design. These
are fed into the STA tool along with the design files and timing library and the
design timing reports are generated. These reports are generated for all the modes
the SoC design operates for all the design corners. The STA tool selects appropriate
values from the timing library file (whether it is best BC, typical TC, or worst-case
WC) and reports the design timing paths for BC, WC, and TC conditions. Each of
the reports is to be analyzed for any negative slacks and appropriate fixes are to be
done in the design. Many PD tools have the capability of using these reports from
integrated STA and optimizing the design for the set speed performance in the
design timing constraint. Only a set of residual timing paths are to be fixed by the
designer which is beyond the scope of PD tools. If advanced timing libraries cor-
responding to on-chip variations (OCV) are provided, PD tool optimizes the design
considering OCV during the process.

Apart from the abovementioned timing analysis, it is necessary to analyze the
design for skew, pulse width, duty cycle, and latency. The design netlist is read by
the STA tool and the violation report is written out. If there are violations, they are
fixed by adjusting the path delays in the gate-level netlist and running STA again. It
is an iterative process. The design extractor modules in PD flow extract parasitics
delays in SPEF format and design netlists. Once all violations are fixed, the SDF file
is written out from the tool to use in the gate-level simulation. The gate-level simu-
lation can be run to complement to each other running early by manipulating the
SDF file written out of STA. The flow is shown in Fig. 9.5.

9.5 ECO Checks

SoC design changes with ECO implementation have to be verified for logic equiva-
lence and static timing by utilising of LEC and STA techniques as explained
previously.

9.6 Electromigration (EM)

Interconnection inside the chip generally uses aluminum and of late copper.
Aluminum and its alloy interconnect lines exhibit a phenomenon called electromi-
gration. These are typically found in the supply and ground rails which always carry
unidirectional current. Electromigration occurs after years of usage of the
SoC. When constant current flows through the power and ground interconnect for a
long time, ions get knocked out by electrons from one place to another creating piles
of ions at one side called hillocks and consequently void at the other end. This
results in open/short faults on the interconnects. This can lead to reliability issues in
SoC. Electromigration rules are added as electrical rules which have to be adhered
to avoid such failures. There are three types of electromigration rules: DC,
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time-varying unidirectional flow, and bidirectional AC. These are considered while
designing power grids. The verification of these design rules is to be passed before
the chip tape-out. Electromigration is not seen much in copper interconnects and
hence gaining importance in today’s SoCs. Copper as interconnect does not exhibit
the problem of electromigration.

9.7 Simultaneous Switching Noise (SSN)

Simultaneous switching noise (SSN) is another problem seen in high-frequency
SoC designs, if not taken care of. It occurs when a large number of logic gates
change logic states at the same time that can lead to system failures. When many
logics switch simultaneously, the voltage fed to the circuit around them becomes a
time-dependent function of the current. The fluctuating current, due to parasitic line
inductance L (though small in value which can otherwise be ignored) existing on
any conducting interconnect, increases voltage drop reducing the effective voltage
at the circuit:

. d,'
Ver =V _lR_LE

Please note that this drop exists on the GND line as well as the power line and can
double the effect. This dynamic change in Vg, has to be taken care of by considering
the data flow in the design and carefully following the layout design rules for power
grid design. Separating the pad ring power supply and logic core power supply is
one of the ways for avoiding parasitic effects on performance and reliability. Also
tapping power supplies from all sides of the die and evenly distributing low-
frequency and high-frequency input-outputs are generally done to avoid intercon-
nect effects on SoC performance. These rules are checked in the electrical rule
checkers (ERC).

9.8 Electrostatic Discharge (ESD) Protection

Electrostatic discharge (ESD) is a critical factor in modern CMOS design. The ESD
destroys the thin oxide of the transistor layer, thus inducing device failures due to
input transistor failure in pads. This is very common in SoC designs if they are not
addressed during design stage. However, the input pad structures often come with
ESD protection circuit, shown in Fig. 9.6, which is simple reverse-connected diodes
between input line and power supply structure connected to sink large ESD energy
by Zener effect. Protection circuits must be added to pads to take care against ESD
as shown in Fig. 9.6.
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9.9 IR and Cross Talk Analysis

Due to the high operating frequency of SoCs at multi-gigahertz, it is very essential
to perform signal integrity (SI) and power integrity (PI) checks like IR drop, cross-
talk effects, and noise to ensure first-time success of SoC designs. Noise effect on
SoC can be due to the following reasons:

* Technology scaling resulting into high transistor density.

e Power supply voltage reduction less than 1 V.

e Increased switching and power density.

* Power supply noise due to resistance on power nets, spatial variations on power
grids, and temporal variations of power supply voltage.

* Cross talk due to one signal interfering with another signal, capacitive cross talk
between RC lines floating and/or drive nets on a chip floating, and signal cou-
pling between nets due to LC transmission line effect.

* Inter-symbol interference.

e Thermal and shot noise.

e Parameter variation.

Static and dynamic IR analysis has to be done to check if the hotspots are within
set limits so that they do not affect the reliability and performance issues for SoC. If
not addressed properly, all of the above can render themselves as noise source lead-
ing to “hard to find” intermittent errors at current switching frequencies. So to cur-
tail the effects of the same, good practices are translated into layout guidelines
which are expected to be followed during physical design. One of the layout guide-
lines is to avoid floating nets which will result in capacitive cross-talk, picking up
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signals from neighboring nets. Layout guidelines will be stringent for sensitive cir-
cuits like low swing on-chip buses, dynamic memories, and low swing pre-charge
circuitry near supply lines. The inductive effect functioning of input-output circuitry
of mixed-signal and analog circuitry will not be pronounced in digital circuits.
Congestion analysis is to be carried out and cell congestion has to be relaxed by
suitably replacing them and distributing them accordingly. Also, the cross-talk
effect is restricted by adding level-restoring circuits called keeper cells in dynamic
switching circuits.

Few of the guidelines to be followed during design layout to avoid cross talk are
the following:

* Avoid floating nets.

* Add keeper cells for sensitive circuits like pre-charge circuits.

» Separate or spread apart the sensitive net routes from fast switching nets.

* Do not have long interconnects on the same layer and parallel interconnect nets
are laid with sufficient gaps.

e If required, shield the fast-toggling nets to protect the power (VDD) and ground
(GND) nets to avoid IR drops. Dynamic IR analysis may show up hotspots due
to cluttering of clock buffers in some spots showing up high switching activity. It
must be taken care of by evenly distributing the clock buffers across the die.

The PD verification tools analyze the design and report violations if any for
hotspot regions. These are to be fixed by the designers. Some of the design fixes for
these issues are generally adhering to the design rules, spreading the logic apart, and
increasing the width of metal interconnects by setting non-default rule (NDR) con-
straints on them. The final reports from this verification are used as signoff tools for
accepting the design for fabrication. A lot of literature is available in VLSI books on
interconnect effects in routing like RC modeling and parasitic parametric effects on
electrical performance. Interested readers can go through them for extra informa-
tion. Also, the tools explain in their user manuals how to run this analysis.

9.10 Layout Verse Schematic (LVS)

LVS is one of the traditional signoff techniques for taping out the design. Physical
layout is checked for retaining the intent of the real design by extracting the netlist
from the design layout. Design netlist is extracted from the structural content in
terms of interconnections from metal layers and base layer structures and by check-
ing for opens, shorts, and any overlapping base cells. Design extracted netlist is
saved in SPICE format. Design extraction is very critical in this flow. The design
extraction tool extracts the polygon structures to determine components like transis-
tors, diodes, capacitors, and resistors and their connectivity information by identify-
ing the layers of construction. Device layers, terminals of the devices, size of
devices, nets, vias, and pin locations are defined and will be assigned a unique
identification. This is further extracted in the form of a netlist. Once done, the layout
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netlist is compared with the golden schematic netlist of the design for preserving the
design intent using an LVS rule deck. In this stage, the number of instances, nets,
and ports is compared. All the mismatches such as opens, shorts, and pin mis-
matches are written out in the LVS report. Check is done comparing the number of
design elements in the layout extracted netlist and netlist in the same stage using
the LVS rule deck. LVS compares circuit topology and device sizes. Comparison is
also done among the number of devices in the layout and schematic netlists, types
of devices, and the number of nets in the two netlists. Typical errors in LVS checks
are number of devices not matching with the number of devices in extracted view,
shorts of nets that are not seen in the golden netlist, component mismatch, value
changes in the form of sizes, etc. The physical design tools provide LVS feature
with cross-referencing across the layout views for violations and corresponding
netlist viewer to debug the issues. Some of the LVS errors are open net, short net
errors, parametric extraction errors, and device mismatches, and their corrections
are shown in Fig. 9.7.

There are dedicated LVS check tools that are used for signoff for tape out. The
difference between the inbuilt LVS module in the P&R tool and the dedicated LVS
checking signoff tool is that the latter uses all expanded details of physical struc-
tures of the design, while the latter uses abstract layout structures. The set of com-
mands is written as an LVS rule set which is fed to the LVS checking module along
with design file, layer assignments, and physical database checks like SNAP and
GRID checks. Schematic netlist provides complete cell-level information along
with nets. LVS flow is shown in Fig. 9.8.

9.11 Gate Level Simulation

Once all the STA violations are fixed in the design, gate-level simulation with back-
annotated extracted timing information in SPEF format SDF is executed for sample
functional scenarios. For the revised design netlist layout, the parasitic extraction
tool writes out the timing information in SPEF file format, that is included (back-
annotated) to run simulations. Note that the extracted design netlist file,
require a library file, to be included to run the simulations. This is done by replacing
the design under test(DUT) in functional test bench with the extracted design netlist
file from any stage of physical design written out by the physical design tool and
reading the SPEF file by back-annotation. This is called dynamic timing verifica-
tion. The gate-level simulation with back-annotated timing is a tedious process
because all the timing parameters like setup and hold times of design elements have
to be correct to pass the vector. This will require fine-tuning the timing of input
stimulus considering the design input latency specifications. Hence, starting early
the gate level simulations for SoC design soon after synthesis stage helps to resolve
any test bench issues. This helps to keep the gate-level simulation setup ready for
the final dynamic timing sign off simulations run after all the timing violations are
fixed in the design. Figure 9.9 shows the gate-level simulation flow for the time-
closed SoC design.
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Fig. 9.7 LVS errors in design and their corrections

9.12 Electrical Rule Check (ERC)

Electrical rule check (ERC) is typically a static and dynamic IR analysis to detect
IR drop bottlenecks, violations of electromigration (EM) rules, extensive checks for
connectivity and reliability such as weak spots in the power grid, resistance bottle-
necks (through short path tracing), missing vias, and current hotspots. The tool pro-
vides what-if scenario analysis on IR and EM by using region-based power
assignment, so that designer can choose the right option. A typical IR map is shown
in Fig. 9.10.
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Fig. 9.10 IR map (Source: Celestry Design Technologies)

9.13 DRC Rule Check

Physical design is verified for design rule violations (DRV). This is done by the
process called design rule check (DRC). It is a process of checking physical design
layout data against the fabrication-specific rules supplied by the process vendor to
ensure successful fabrication. Process design rules are related to the X-Y dimen-
sions of layout structures and not the vertical dimensions of the layers. Example
rules from foundries for a few technologies are shown in Table 9.1.

DRC is done by tools by generating computational geometry from the SoC
design layout and checking the relation of overlap or distance between polygons of
either the same or different layers. A screenshot of the DRC run is shown in Fig. 9.11.

Typical design rules for a particular technology node look like the one shown in
Fig. 9.12.

9.14 Design Rule Violation (DRV) Checks

DRV is typically performed during physical design after CTS, routed, and as the
final design completion. The typical steps involve the following:

e Perform RC extraction of the clock nets and compute accurate clock arrival time.
e Adjust the I/O timings.

e After implementing the clock tree, the tool can update the input and output
delays to reflect the actual clock arrival time.
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Table 9.1 Sample DRC rules for different technologies

DRC rule
Width-based spacing
Min area rule

Cut number (via)
Dense EoL (OPC)
Min step (OPC)

Fig. 9.11 Screenshot
of DRC

130 nm
1-2
1 pitch
N/A
N/A
N/A

90 nm
2-3

2 pitch
1-2
N/A

1

SoC Physical Design Verification

65 nm 45 nm
3-5 7

3 pitch 5 pitch
4-5 5-6
M1/M2 All layers
5 5
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Fig. 9.12 Design rules

Perform power optimization.

e Use a large/max clock gating fanout during the insertion of the ICG cells.
* Merge ICG cells that have the same enable signal.
e Perform power-aware placement of integrated clock gate (ICG) and registers.

Check and fix any congestion hotspots.

Optimize the scan chain.

Fix the placement of the clock tree buffers and inverters.
Perform placement and timing optimization.

Check for major hold time violation.
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9.15 Design Tape Out

When all the physical design verification is completed to the satisfaction of the
designer, the SoC design is written out as a GDS II file, and the design database is
transferred to a fabrication house through file transfer protocol (FTP) process. This
is called the design tape out. Along with the design file, it is required to tape out final
reports of DRC runs and the design constraint file in SDC format so that DRM veri-
fication is performed on the database and if cleared, the database will be accepted
for fabrication by the fabrication process.
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Chapter 10
SoC Packaging

10.1 Introduction to VLSI SoC Packaging

VLSI SoCs have to be packaged such that they can interface with the rest of the
world in a product to be used as a single unit or be interfaced with other circuits.
They also have to be protected from mechanical stress, environment (humidity, pol-
lution), and electrostatic discharge during handling. In addition, SoCs have to be
exposed to be tested to ensure reliability with tests like the environmental test, burn-
in tests, and other safety tests before they are ready for use. This is achieved by
packaging it. Packaging provides a high-yield assembly for the next level of integra-
tion or interconnection on board for realizing the final product. Hence, the package
must meet all device performance requirements such as electrical (inductance,
capacitance, cross talk), thermal (power dissipation, junction temperature), quality,
reliability, cost objectives, and testability at the package level. Hence, system on
chip dies are assembled in the package. Major functions of packaging, therefore are
the following:

1. Protecting the system on chip from environment and handling.

2. Provide path for Heat dissipation from chip to the ambience.

3. Provide reliable electrical connectivity to the neighboring systems through inter-
face pins.

4. Packaging for handling further reliability tests on the system on chips.

Packaging and bonding wires on packages introduce inductive parasitics which
can have an adverse effect on the SoC functioning. The current flows through input-
output wires due to high signal transition activity which can cause voltage fluctua-
tions like ringing, overshoots, and undershoot on supply rails affect SoC functionality.
SoCs with more than 1000 pins can be seen today and designing a package for
handling simultaneous signal variations to minimize the inductance effect is chal-
lenging. A few examples are shown in Fig. 10.1.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 215
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Dual CerQuad C& J-Leaded Pin Grid Small
In Line Flat Pack. Chip Carner Array Outline

SOICS

SOIC 16
SOIC 20
SOIC 24

CQFP 20 CLCC 16
CQrPris CLCC 28
CQFP 44 CLOC 44
CQFP 64 CLOC 6%
CQFF 68 CLCC 34

CQFP 84
CQFP 100 JLOC 28
CQFP 120 JLCC 44
CQFP 144 JLCC 52
CQFP 160 JLOC 68
CQFP 208 JLOCC 84

Sealing or Removable Lids (Glass/Epoxy or Metal)

Fig. 10.1 Few examples of packages

10.2 Classification of Packages

Depending on the way the leads are arranged on packages and the way they are
mounted on the printed circuit boards, there are a variety of package architectures.
Based on the arrangement of leads, they are classified as in-line, periphery, and
array packages. Based on the way they are mounted, they are classified as through
hole or surface mount package architectures. Depending on the material used for the
packages, they are classified as plastic or ceramic. Depending on the application and
standard to which packaging is manufactured, ceramic packages are classified as
military (MIL), automotive, and space, and plastic packages are classified as indus-
try and commercial.

10.3 Criteria for Selection of Packages

Selection of the right package for the SoC depends on criteria listed below:

e Chip performance requirement.

e Power supply IR drop and noise.

e Impedance matching for high-frequency operation.
¢ Electrical requirements of logic interfaces.

e Chip physical requirement.

* Die size.
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e Pin count.

e Thermal requirement.

* Die temperature distribution.

* Package thermal resistance.

* Application environment.

e Hermiticity, temperature, and altitude (SER).

e Form factor.

* Application based, for example, SoCs for smartphones and portable devices.
* Cost.

10.4 Package Components

Typical wire-bonded packages consist of the following parts: planes, bonding wire,
and lead planes. The signal from the IO buffer flows through the die pad to a bond
wire which lands on the package landing and flows through planes/package routing/
lead frame depending on the type of package and then to the package pin or solder
ball (Fig. 10.2).

10.5 Package Assembly Flow

The silicon die is mounted and bonded onto the package base using epoxy or eutec-
tic glue, and then each of the die pads is wire bonded to the package landing using
wire bonding machine by suitable bonding types like wedge bonding, ball bonding,
or ribbon bonding and then it is sealed with lid or mold. The step-by-step flow is
shown in Fig. 10.3.

Bond wires are typically made of gold or aluminum of different thickness and it
is selected based on the tolerability of parasitic inductance values. The wire bonding
process is based on the ultrasonic welding technique or thermo-sonic technique.

Package trace

Bond wire
Pad on die

Package pin

Fig. 10.2 Parts of wire-bonded package
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— (glue to package) Oven Cure Die Attach
N Die
Tested
Wafer
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on die to pads on
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reen package
Printing
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Fig. 10.3 Package assembly flow
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Fig. 10.4 Reliability tests on bond wire

Both wires are bonded on pads as small as 10sq.micron size. The thermo-sonic
technique is used to bond solder balls and uses hardened pure gold as bond wires,
and ultrasonic bonding uses aluminum wires for high voltage applications. Bonding
types can be in-line where the package pins are placed in order or it can be staggered
where bond pads are placed in a cross fashion to accommodate more input-outputs.
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Fig. 10.5 Bonding rules

Quality of bonding is tested by visual inspection using a scanning electron micro-
scope (SEM) and pull and shear tests as shown in Fig. 10.4.

Wire bonding and assembly procedure have to follow bonding rules like physical
spacing, length of bond wires, etc. A few examples are shown in Fig. 10.5.

10.6 Packaging Technology

There are many types of packages used in packaging the systems on chip. They are
the following:

1. Wire bonded: QFP, BGA, uSTARBGA, etc. (ceramic and plastic) are examples
of wire-bonded packages, Few wire-bonded packages are shown in Fig. 10.6.

2. Flip-chip packages: Few examples are FBGA (ceramic and plastic). In this the
die is directly flipped and connected to the interconnect patterns on the package
substrate through solder balls as shown in Fig. 10.7.

3. Advanced packages with examples such as system in package (SIP) and chip
scale package (CSP)/wafer scale packages (WSP). Figure 10.8 shows Pentium
Pro SIP package. Figure 10.9 shows wafer scale package from Texas Instruments.
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Plastic Leaded Metric Quad Thin/ Low Quad Small
Chip Carrier Flat Package Flat Package Outline

PLCC 20 MQFP 80 TQFP 32 SOIC 8
PLCC 28 M TQFP 44 SOIC 14
PLCC 44 MQF] TQFP 48 SOIC 16
PLCC 68 . . SOIC 20
SOIC 22
. . SOIC 24
MOQFP 240 TQFP 160 SOIC 28
MOQFP 256 TQFP 176

Thin Shrink Small Plastic Fine pitch
Outline Package Ball Grid Array Ball Grid Array

TSSOP 20 PBGA 204
TSSOP 24 PBGA 217
TSSOP 28 PBGA 225
TSSOP 38 PBGA 250
PBGA 313
PBGA 352

FBGA 81
FBGA 108
FBGA 144
FBGA 160
FBGA 196
FBGA 208

PBGA 420
PBGA 456

FBGA 225
FBGA 256
FBGA 280

Fig. 10.6 Wire-bonded packages

10.7 Flip-Chip Packages

Flip-chip packages are gaining popularity as they allow for smaller size and pitch
and large IO pins and high heat dissipation advantage. In this, the die is directly
flipped onto the package which has solder balls routed to the landing.
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Fig. 10.9 Wafer chip scale packaging. (Credit by © Raimond Spekking/CC BY-SA 4.0 (via
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64189136 Source Texas Instruments)
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10.8 Typical Packages

Few examples of typical packages are shown in Fig. 10.10.

10.9 Package Performance

Package performance is measured by the electrical tests and mechanical tests per-
formed on them. Electrical tests include tests for pin parasitic effect and simultane-
ous output switching noise and mechanical tests include heat radiation using
thermal models.

10.10 System Integration

Developing system on chip is one aspect of it but packaging is much more advanced
in housing many chips in a single “systems in packages” (SIP), where the multiple
chips are either wire bonded to each other or flip-chipped. Also the passives, small
circuits, SMD devices, and bare dies are all packaged together into one. A few
examples of this are shown in Fig. 10.11.

10.11 Packaging Trends

VLSI technology has piggybacked on packaging technology for meeting a never-
ending demand for integration of more and more functionalities as multi-chip sys-
tem solutions. This also has kept alive the “More than Moore” vision. Implementing
more complex multifunction system on a chip as a monolithic IC turns out to be
super expensive and is not commercially viable. This was predicted by Gordon
Moore who stated that “It may prove to be more economical to build large systems
out of smaller functions, which are separately packaged and interconnected.”
Technology like the system in package (SIP) for such systems has worked out well
as an alternatives to designing an advanced-node monolithic SoC for heterogeneous
ICS. Exploring such alternatives has continued in parallel with Moore’s miniatur-
ization over the decades. The evolution of packaging technologies for such integra-
tion is shown in Fig. 10.12.

With the growing need for the integration of much more heterogeneous dies-
based architectures, new semiconductor package design methodologies are required.
This demand arises in advanced nodes less than 7 nm; the interconnect in traditional
packages is not sufficient to meet PPA goals. Processing in sub-ten nanometer tech-
nologies also introduces new difficulties, to realize nonplanar FinFET transistor
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BGA advantages:

+I/O’s: up to 456

+Shorter interconnections (density)
+1 up to 4 routable layers

*High Frequency

Thickness die between 200 and 300 pum

Via Hole

Wire Bond
BT Resin Solder Mask
Circuit Trace Solder Ball

Ceramic BGA (customized)

— Body size: 35 mm x 35 mm
=420 1/0’s, 4 metallization layers
— Thickness: 1.8 mm

— Ball pitch: 1.27 mm

— Die-Down

*Thermal Performance
*Low Inductance; High Frequency
+*Thin; Low Profile

STD BOM: MSL-2 at 240°C
Green BOM: MSL-1 at 260°C

Thickness die between 200 and 300 ym
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'
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Fig. 10.10 (a) BGA package, (b) Ceramic BGA. (¢) QFN package
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Fig. 10.12 Evolution of packaging technologies

structures, needing complex double-patterning lithography for critical layers, and
perhaps even new substrates. Newer systems demand the integration of chips real-
ized in diverse technologies. This has led to the exploration of stacked die integra-
tion technologies.

10.11.1 Stacked Die Integration

Over the years, designers constantly strived to catch up with processing technolo-
gies to make Moore’s law true: first to bridge the design-productivity gap and sec-
ond to overtake it using innovative packaging technologies. Innovation in
interconnect technologies such as multi-chip modules, silicon in the package, and
package-on-package schemes has played a major role in this endeavor. The current
3D IC concept is believed to be promising profound levels of integration as it is
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Fig. 10.13 3D IC structure

technology to stack multiple dies through a layer of the interposer. An interposer is
a silicon layer used as a bridge or a conduit to allow electrical signals to pass through
it from one die to another die or die to board with varying signal pitches. A typical
3D IC structure is shown in Fig. 10.13.

10.11.2 3D Integration Schemes

A few commonly used schemes for the integration of 3D ICs are as follows.

2.5D IC: In this integration concept, two or more dice are placed adjacent to each
other facing downward toward the silicon interposer. Dies are supported by
micro-bumps on their active surfaces which get connected to the silicon inter-
poser. Sometimes, the redistribution layer (RDL) is added to align the micro-
bumps to the interposer pads, or signals are routed on the RDL to connect them.
Connection from RDL to interposer is achieved through silicon vias (TSVs).
There is a possibility of multiple RDLs to the package for complex integra-
tion needs.

3D IC: In the 3D IC concept, dies are stacked one above the other and they are
interconnected vertically through silicon vias (TSVs). The stacked dies can be
similar as in memory blocks or they can be of different functionalities realized
using different compatible technologies. The 3D integration of similar dies
is called homogeneous 3D technologies and that of dissimilar dies is called het-
erogeneous 3D technology. 3D heterogeneous integration technology is very
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complex and most promising in terms of possible levels of integration. Technology
offers different approaches to integrating multiple dies.

Face-face: Dies are connected using micro-bumps wherein the lower die also has
TSV through active layers and substrate to metallization on its back surface. The
back surface of the die acts as RDL using pads onto which pads are laid to con-
nect them to the package substrate.

Face to back: Two or more dies are placed one above the other and connections are
made through TSV and DSL and micro-bumps and to the package substrate.
5.5D IC: in this integration approach, the 3D-IC integration is connected to 2.5D-1C
silicon interposer to enhance further integration to develop high bandwidth,

compute-intensive solutions

Chiplets: Chiplet is a fully functional system component with an interface that is
designed to work with other chiplets to form a system on the chip. Integration of
chiplets uses advanced packaging technology information during chip design.
The concept of multiple chips in a single package is an old technique. Multi-chip
modules (MCMs) and system in package (SIP) existed in semiconductor tech-
nologies as early as 1980 as shown in Fig. 10.12 Assembling chiplets side by side
on the same substrate and interconnecting them is termed as 2.5D technology.
Applications like high-performance computing, Al, and systems with incredibly
large memories of high-bandwidth and low-latency demand integration of multi-
die fabricated by different technologies like MEMS (sensors), REFECMOS, ana-
log, and many others are driving factors for multi-die integration. This has forced
designers to look for advancements beyond 2.5D technologies to 3D IC tech-
nologies and heterogeneous integration.

3D IC constituents:
The following are different constituents of 3D IC:

e Bumps and balls.

* Ball grid arrays.

e C4 (controlled collapse chip connection) bumps.
*  Micro-bumps.

* Through silicon vias.

* Redistribution layers.

 Silicon interposer.

Bumps and balls: Bumps and balls serve to match the interconnect spacings and
dimensions to enable the connection between two technologies. The dies are
connected to PCBs through these bumps and balls.

Ball grid arrays: A package-level interconnect that connects a packaged device
to a PCB.

C4 (controlled collapse chip connection) bumps: Solder balls arranged as an array
of grids used to connect bare dies to PCBs. These bumps have a pitch of 180um.
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Micro-bumps: Micro-bumps are small solder balls of pitch less than 10 pm that are
used to connect two dies face to face.

Through silicon vias (TSV): TSVs use the CMOS etching process to create vias
from the active to top of the die and through the backside of the substrate. They
are further filled with copper or tungsten to make interconnections from the cir-
cuit to the top of the die to the backside. The typical diameter of the TSV is 12um
with a 180um pitch. Filling these long vias is very challenging and time consum-
ing. Hence, the wafers are trimmed to 50um thickness from 300 to 350um origi-
nal thickness. Another main challenge is that these vias travel through active
layers of the wafer and the designers must take care of the ESD issues that origi-
nate from them during the physical design of the chip planned for 3D with
TSV. TSV can also result in mechanical stress which also needs to be addressed.

A redistribution layer (RDL): The redistribution layer shown in Fig. 10.14 con-
sists of metallization on the surface of a die, either on its active face or on the back
of the substrate, which is then patterned to redistribute connections from one part of
the die to another, or to match the pitch of two interconnection technologies.
Redistribution layers have landing bumps on which micro-bumps are formed to
make connections.

Die

RDL bump

Package
substrate

PCB,

Package
ball

Fig. 10.14 Redistribution layer (RDL). (Source: EDN)
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Fig. 10.15 Silicon interposer. (Source: Wikipedia)

Silicon interposer: An interposer is a silicon layer used as a bridge or a conduit
to allow electrical signals to pass through it from one die to another die or die to
board with varying signal pitches. The silicon interposer is shown in Fig. 10.15.
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Chapter 11
Reference Designs

11.1 Design for Trial

The design examples and case studies presented here can be copied onto the Linux-
based design working directory for practice with EDA tools. Design examples and
test benches are modelled in Verilog HDL. The simulations can be run, and the
results can be compared with the sample waveforms provided against each of the
designs in this chapter. These designs can be reused to build larger systems.

11.2 Prerequisites

The user should have working knowledge of Linux commands and any of the text
editors, such as Vi editor. For running simulations and debugging, simulator and
waveform viewer tools are required. The design examples in Part 1 can be simu-
lated. For the design flow in Part 2 involving synthesis and logic equivalence check
(LEC), standard cell library files are required. You also need a synthesis tool for
this part. For static timing analysis (STA) and physical design, you require place
and route (physical design) tools, a technology library with physical design views,
and delay models of the design elements. Therefore, for this part, the scope of ref-
erence design is restricted to explanations and indicative scripts using a dummy
technology library. Also, an attempt is made to present a near real-time design
environment.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 229
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11.3 User Guidelines

The database is to be copied to the working directory. The directory structure shown
in the next section is with reference to the current working directory. Each of the
design directories has a “document file,” which will explain the design and the test
bench in brief. User can experiment on any standard simulators like NCSim,
QuestaSim, and VCS. For running the simulations and particular tool commands,
the user is advised to refer to the tool’s user manual.

11.4 Design Directory

The directory structure is as shown below:

Pwd>://ReferenceDesigns/Examples/adder/design.v
/tb.v

/doc

/Multiplier/ design.v
/tb.v

/run. f

/doc

/Counter design.v
/tb.v

/run. f

/doc

/DesignFlow/
/Case study/MBI/

/IOT_SoC/

11.5 Part1

The following example designs are modeled in Verilog HDL in this section.
Arithmetic functions:

1. 32-bit adder

2. 16 x 16 multiplier

3. 32-bit counter with overflow
4. 4-bit up/down counter
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Fig. 11.1 RTL design and test bench structure

Logical function blocks:

2 clients arbiter
8:1 multiplexer
1:8 demultiplexer
4:2 encoder
9. 2:4 decoder
10. 2x2 matrix multiplier
11. 2-bit comparator
12. Finite state machine-based sequence detector (sequence: 10101)
13. Linear feedback shift register (LFSR)
14. Hour-minute-second timer
15. Self-synchronizing scrambler
16. Side stream scrambler-descrambler
17. Colored ball puzzle box
18. Scratchpad register
19. Configuration and status registers
20. Field crossing clocks (clock domain crossover—CDC) block

PN

The design and test bench model are described using behavioral RTL models
using Verilog HDL. The RTL and test bench (TB) model structures of the designs
are shown in Fig. 11.1.

User can find comments in all the design files within a pair of // which are self-
explanatory. The RTL directory in respective design directory has the RTL design
file and test_bench (TB) files modeled in Verilog HDL. It also contains sample
waveform file which can be used as reference waveforms for simulations. You need
waveform viewer tool such as SimVision to open the wave form file in ved format.

11.6 Design Examples

32-bit adder
Inputs: two 32-bit operands in A and B
Output: sum_32
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Function: The design adds two operands of 32-bit binary numbers
stored in A and B both 32-bit registers representing the operands.
The result is stored in 33-bit sum 32 register which has {carry, Sum}
Design file: 32bit adder.v.

// 32 bit adder design

module adder (

adder out,

carry out

)7
//input-output declaration
input clk , reset n ;

input en ;
input [31:0] op a ;
input [31:0] op b ;

output [31:0] adder out ;
output carry out ;
//Internal signal declaration

reg [32:0] adder reg ;

assign adder out = adder reg[31:0] ;
assign carry out = adder reg[32] ;

always@ (posedge clk or negedge reset n)
begin
if (!reset n) begin
adder reg<=33'd0;
end
else begin
if (en) begin
adder reg <=op a + op b ; // en is the enable to carry the addi-
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tion of two numbers.
end

end

end

endmodule

Test bench module adder_tb

Inputs: Nil
Outputs: Nil
Function: The test bench applies random values to A and B operands
and checks the result of addition by generating a signal match to
indicate the correct behavior. The waveform 32-bit adder.vecd 1is

written out which can be observed using waveform viewer.

Test bench file: 32-bit_adder_tb.v
module adder tb;

reg clk;

reg reset n;
reg en;

reg [31:0] A;
reg [31:0] B;

wire [31:0] sum;
wire carry out;

// clock generation

always #5 clk = ~clk; // toggle clock for every 5 ticks
initial begin

clk = 0;

reset n = 1;

en = 0;

Sdisplay ("-—-—-—————- Test Started —--------- "),

#10 reset n = 0;
#10 reset n = 1;

en = 1;

Sdisplay ("--—-——=—-—- Sending Data A = 32'hAAAAAAAA and B =
32'hEEEEEEEE ———=—=————-— ");

A = 32'"hAAAAAAAA;

[oy]
|

= 32'hEEEEEEEE;
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display ("--======- Sending Data A = 32'h7777777
32'h2456321 ———---——- ",
#10

A = 32'h7777777;
B = 32'h2456321;

Sdisplay ("--—-—=———-—- Sending Data A = 32'hCcccccccce
32"hBBBBBBB ———=====— ") ;

#10

A = 32'hCcccceeceey

B = 32'hBBBBBBB;

Sdisplay ("-——-—————-—- Sending Data A = 32'hl11111111
32'p11111111 --=====—- ") ;
#10

A = 32'h11111111;

B = 32'h11111111;

$display ("--------~ Test Ended -——--—-——- ",
#1000 Sfinish;

end

//module instantiation
adder u_adder (
.clk(clk),
.reset n(reset n),
.en(en),
.op_a(a),
.op b (B),
.adder out (sum),
.carry out (carry out)

)7

initial

begin

sdumpfile ("adder tb.vcd");
sdumpvars (0,adder tb);
end
endmodule

ARRRAARA

EEEEEEEE

and B

and B

and B
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16 x 16 Multiplier

16 x 16 multiplier

Inputs: two 16-bit operands in A and B

Outputs: 16-bit multi out

Function: The design performs multiplication of two operands of
16-bit binary numbers stored in A and B both 16-bit registers rep-
resenting the operands. The result is stored in 16-bit register.

Design file: multiplier.v

/**************************************

// Module works for 16x16 multiplier of A and B.

// This 1is combinational block which doesn’t require clock and
reset //

//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/

//16*16 bit multiplier
module multiplier (

input clk ,

reset n ;
input en ;

input [15:0] op a ,
op b ;

output [31:0] multi out ;

reg [31:0] multi out reg ;

assign multi out = multi out reg ;



236

always@ (posedge clk or negedge reset n)
begin

if (!reset n) begin

multi out reg<=32'd0;

end

else begin

i1f (en)

multi out reg<= (op a * op b);
end
end
endmodule

Test bench module multiplier_tb

Inputs: Nil
Outputs: Nil

11  Reference Designs

Function: The test bench applies random values of A and B and

result 1is stored in 16 register. The waveform multiplier tb.vcd

can be observed using waveform viewer.

/********************************************************/

Test bench file: multiplier tb.v
module multiplier tb;

reg clk;

reg reset n;

reg en;

reg [15:0] op a;
reg [15:0]op b;

wire [31:0] multi out ;

multiplier ul (clk,reset n,en,op a,op b,multi out);

always #5 clk=~clk;

initial
begin

clk =0;
reset n=0;
en=0;

op a=0;

op b=0;

#10 reset n=0;
#10 reset n=1;
en =1;
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16'hAAAA;
16 'hBBBB;

op a

op b

#10 op a = 16'h4444;
op b = 16'h1111;
#100 $finish;

end

initial

begin
$dumpﬁle("multiplier;tb.vcd");
sdumpvars (0,multiplier tb);
end

endmodule

@ Baseline =0

EF| Cursor-Baseline v =20ns Baseline = 0

TimeA

IName B~ [Cursor @v

AXXX

« op_al15:0)
» op_b[15:0]
. multi_out[31:0] J*h 00000000

RERHE i 1111

| 00000000 7D26D8F | 048D0CE

32-bit counter with overflow

32-bit counter overflow

Inputs: en, load

Outputs: counter

Function: The design, when enabled, is high when counter starts
counting, and when the load is made high, 33’hfffffff8 is loaded to
counter out and the result is stored in register counter 33 {coun-
ter out 32, counter overflow}.

Design file: counter overflow.v
/**************************************

// Module starts 32-bit counting and when load 1is made high,
337 hiffffff8 is loaded to counter out.

// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/

//32-bit counter with overflow design
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module counter overflow(

counter out ,
counter overflow

)7

//Input Output declaration

input clk ,
reset n ;

input en ;
input load;

output [31:0] counter out ;

output counter overflow;

//Internal signal declaration
reg [32:0] counter reg ;
wire load;

assign counter overflow= counter reg[32] ;
assign counter out = counter reg[31:0] ;

always@ (posedge clk or negedge reset n)
begin

if (!reset n) begin

counter reg<=33'd0;

end

1f(load)

counter reg<=33'b111111111111111111111111111111000;
i1f (en)

counter reg<=counter reg+33'dl ;
end

endmodule

Reference Designs
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Test bench module counter_overflow_tb

Inputs: Nil

Outputs: Nil

Function: The test bench applies random values of enable and load
and checks the result of 32-bit counting. The waveform counter
overflow tb.vcd is written out which can be observed using wave-
form viewer.

Test bench file: counter overflow tb.v

module counter overflow tb;

// Inputs
reg clk;

reg reset n;
reg en;

reg load;

// Outputs
wire [31:0] counter out;

wire counter overflow;

always
#5 clk = ~clk;

initial
begin

clk = 0;
reset n = 0;
en = 0;

load = 0;

#10 reset n = 0;

#10 reset n 1;
#10 en = 1;
#10 load =1;
#80 en=0;
#10 en=1;

#10000 $finish;
end

counter overflow uut (
.clk(clk),
.reset n(reset n),

.en(en),
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.counter out (counter out),

.counter overflow (counter overflow),

. load (load)

) ;

initial

begin

$dumpﬁle("counte:ﬁoverﬂow _tb.vcd");
Sdumpvars (0, counter overflow tb);
end
endmodule

4-bit up/down counter

4-bit up/down counter

Inputs: en

Outputs:up counter, down counter

Function: The design, when enabled, is high when the up counter
starts counting from 0000 to 1111. The down counter starts counting
from 1111 to 0000.

Design file: updowncounter.v

/**************************************

// Module starts 4-bit up counting and 4-bit down counting

// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/

//4-bit counter design
module updowncounter (
clk,
resetn,
en,
up counter,
down counter

)7
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input clk;//input clock of the design
input resetn;// avtive low reset
input en;// active high enable

output[3:0] up counter;
output [3:0] down counter;

wire clk;
wire resetn;

wire en;

reg [3:0] up counter;

reg[3:0] down counter;

// for every posedge of the clock below function has to happen
always @ (posedge clk or posedge resetn)

begin

if( !resetn)/*if reset 1is zero, reset upcounter to 0000 down-
counter to 1111*/

begin

up counter <= 4'b0000;

down counter <=4'bl1l1ll;

end

else 1if(en)

begin

up counter <= up counter + 4'b0001;// incrementing the count value
down counter<= down counter-4'b0001;// decrementing the count value
end

end

endmodule

Test bench module counter_tb

Inputs: Nil
Outputs: Nil
Function: The test bench applies random values and checks the
result of counting. The waveform updown counter tb.vcd can be
observed using waveform viewer.
Test bench file: updown counter tb.v
module updown counter tb;
// Inputs
reg clk;
reg resetn;

reg en;

// Outputs
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wire [3:0] up counter;
wire [3:0] down counter;

// clock generation
always #5 clk = ~clk; // toggle clock for every 5 ticks

initial begin

// Initialize Inputs
clk = 0;

resetn = 1;

en = 0;

//Sdisplay ("-——-—————- Test Started —---—--——-— ")
#10 resetn

I
(.}
e

#10 resetn

I
[
S,

en = 1;

#500 Sfinish;
end

counter uut (

.clk(clk),

.resetn (resetn),

.en(en),
.up_counter (up counter),
.down counter (down counter)

);

initial begin

sdumpfile ("updown counter tb.vcd");
sdumpvars (0,updown counter tb);
end

endmodule
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2 clients arbiter

Inputs: Request from client 1 and client 2

Outputs: Grant 1, Grant 2

Function: The design grants the request to clients (master) based
on priority. If priority select is high, the request is granted to
client 1 and then the request is granted to client 2.

Design file: arbiter.v

/**************************************

// Module grants request to the respective clients. If both the
clients request at the same time based on the priority the request
is granted to client 1 followed by client 2.

// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of commands.

***************************************/

// arbiter design

module arbiter (

[ input data-----————=—=———————————"— //
clk ,

reset n ,

[ Input interface--—--———=—=—=————————————- //

priority sel , //1- clientl 0- client2
clientl req ,
client2 req ,

o grantl ,
o grant2
)

input clk ,

reset n ;

input priority sel , //0- clientl 1- client2
clientl req ,
client2 req ;

output o grantl ,
o grant2 ;

reg [1:0] curr state ,
next state ;

reg clientl req d ,
client2 req d ;

parameter IDLE = 2'd0 ,
CLIENTI = 2'dl ,
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CLIENT2 = 2'd2 ;

always@( clientl req d ,
client2 req d ,
curr state ,
priority sel
)
begin
case (curr state)

IDLE : if (priority sel && clientl req d)
next state = CLIENTI1 ;

else if (client2 req d)

next state = CLIENTZ ;

else

next state = IDLE ;

CLIENT1 : if ( client2 req d )
next state = CLIENTZ ;

else

next state = IDLE ;

CLIENT2 : if ( clientl req d )
next state = CLIENTI1 ;

else

next state = IDLE ;

default : next state = IDLE ;

endcase
end
always@ (posedge clk or negedge reset n)
begin

if (!reset n ) begin

curr state<=2'd0;

end

else begin

curr state<=next state ;

end

end

assign o grantl = (curr state == CLIENT1 ) ;
assign o grant2 = (curr state == CLIENTZ2 ) ;

always@ (posedge clk or negedge reset n)

Reference Designs



11.6 Design Examples 245

begin
if (!reset n ) begin
clientl req d<=1'd0;
client2 req d<=1'd0;
end

else begin
if (o grantl)
clientl req d<=1'd0;
else if (clientl req)
clientl req d <=1'dl;
if (o _grant2)
client2 req d<=1'd0;
else if (client2 req)
client2 req d <=1'dl;
end

end

endmodule

Test bench module arbiter_tb

Inputs: Nil

Outputs: Nil

Function: The test bench applies random requests from client 1 and
client 2 and checks the result of granting the request. The wave-
form arbiter tb.vcd can be observed using waveform viewer.

Test bench file: arbiter tb. v
module arbiter tb;

// Inputs

reg clk;

reg reset n;

reg priority sel;
reg clientl req;
reg client2 req;

// Outputs
wire o grantl;
wire o grant2;

initial begin
clk=1"'d0;

forever #5 clk=~clk;
end
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arbiter uut (

.clk(clk),

.reset n(reset n),

.priority sel (priority sel),
.clientl reqg(clientl req),
.client2 reqg(client2 req),

.o _grantl (o grantl),

.0 _grant2(o_grant2)

)7

initial begin
clk = 0;

reset n = 0;
priority sel = 0;
clientl req = 0;
client2 req = 0;
end

initial begin

#10 reset n =0;

#10 reset n = 1;

@ (posedge clk)

#10 priority sel = 1;

clientl req = 1;
client2 req = 0;

#10
clientl req = 0;
client2 req = 1;

#10
clientl req = 0;
client2 req = 0;

#10

priority sel = 0;
clientl req = 1;
client2 req = 1;

#10
priority sel = 1;

clientl req = 1;
client2 req = 1;
#100 $finish;

Reference Designs
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end

initial begin

sdumpfile ("arbiter tb.vcd");
sdumpvars (0,arbiter tb);
end

endmodule

8:1 multiplexer

Inputs: din 8, select lines 3

Outputs: dout

Function: The design works based on the select lines, and appropri-
ate output for given input is generated.
Design file: mux8x1l.v

/**************************************

// Module works based on the select lines. If select line is 1 1st
input is selected and goes on..

// Demux is a combinational block which doesn’t require clock and
reset but the output from

// demux is latched on clokedge as can be seen in the model. //
// User can refer to any Verilog HDL language book to understand
the syntax of commands. //
***************************************/

//8:1 multiplexer
module mux8x1 (

clk,// clock input of the design

rstn,// avtive low reset

en,// avtive high enable

din, //data input

sel,// select lines

dout// data output

)7
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input en;
input [7:0] din;
input [2:0] sel;

wire clk;

wire rstn;

wire en;

wire [7:0] din;

wire [2:0] sel;

)/ mmmm e — output datatype--——-————-—-———-——-

reg dout;

// for every posedge of the clock below operation should take place
always @ (posedge clk or negedge rstn)

begin
if (!rstn)
dout = 0;

else 1f (en)

case (sel)
3'b000:dout=din[0] ;
3'b001:dout=din[1],;
3'b010:dout=din[2] ;
3'b011:dout=din[3],;
3'b100:dout=din[4];
3'b101:dout=din[5],;
3'b110:dout=din[6];
3'b111:dout=din[7];
endcase

end

endmodule

Test bench module mux8x1_tb

Inputs: Nil

Outputs: Nil

Function: The test bench applies random values to 3-bit select
lines and check the dout. The waveform mux8xl tb.vcd can be observed
using waveform viewer.

Test bench file: mux8xl tb.v

module mux8x1 tb;
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// Inputs

reg clk;

reg rstn;

reg en;

reg [7:0] din;
reg [2:0] sel;

// Outputs

wire dout;

// clock gener
always #5 clk =

initial begin
// Initialize
clk = 0;

rstn = 1;

en = 0;
//$display ("---
#10 rstn = 0;
#10 rstn =1
en = 1;

ation

~clk,; // toggle clock for every 5 ticks

Inputs

sel=3'b000; din = 8'b00000001;,

#10 sel=3'b001;
#10 sel=3'b010;
#10 sel=3'b011;
#10 sel=3'b100;
#10 sel=3'b101;
#10 sel=3'b110;
#10 sel=3'bl111;
#10 sel=3'bl111;
#10 sel=3'b110;
#10 sel=3'b100;
#100 Sfinish;
end
mux8xl uut (
.clk(clk),
.rstn(rstn),
.en(en),
.din(din),
.sel (sel),
.dout (dout)
)7

initial

din =
din =
din =
din =
din =
din =
din =
din =
din =
din =

8'b00000010;
8'b00000100;
8'b00001000;
8'b00010000;
8'b00100000;
8'b01000000;
8'b10000000;
8'b00000000;
8'b10000000;
8'b00010000;

249
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begin

sdumpfile ("mux8x1 tb.vcd");
sdumpvars (0,mux8x1_tb) ;
end

endmodule

1:8 demultiplexer

Inputs: din 8, select lines 3

Outputs: dout

Function: The design works based on the select lines, and appropri-
ate output for given input is generated.

Design file: demuxlx8.v

/**************************************

// Module works based on the select lines. If select lines is 2,
the 2nd bit in output will be high //

// and rest will be zeros.

// This 1is combinational block which doesn’t require clock and
reset but the //

// output is latched using clock. //

// User can refer to any Verilog HDL language book to understand
the syntax of commands. //

***************************************/

//1:8 demultiplxer with 3 selectlines

module demuxIx8(

clk,
rstn,
en,

sel,
din,
dout
)7
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input clk; // input clock of the design
input rstn;// active low reset

input en;// active high enable

input [2:0] sel;// select lines

input din;// datain

wire clk;
wire rstn;
wire en;
wire din;

wire [2:0] sel;

reg [7:0] dout;

// for every postitive edge of clock perform below operation
always @ (posedge clk or negedge rstn)
begin
if (!rstn) // check condition reset=0,reset dout to 0
dout = 0;
else 1f (en)
case (sel)
3'b000:begin
dout [0]=din;
dout[7:1]=7"b0;
end
3'pb001:begin
dout[1]=din;
dout[0]=1"b0;,
dout[7:2]=6"b0;
end
3'p010:begin
dout [2]=din;
dout[1:0]=2"b0;
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dout[7:3]=5"'b0;,

end
3'pb011:begin
dout [3]=din;

dout[2:0]=3"b0;
dout[7:4]=4"'b0;

end
3'p100:begin
dout [4]=din;

dout[3:0]=4"b0;
dout[7:5]=3"b0;,

end
3'p101:begin
dout [5]=din;

dout[4:0]=5"b0;
dout[7:6]=2"b0;

end
3'p110:begin
dout[6]=din;

dout[5:0]=6"b0;

dout[7]=1"'b0;

end
3'p111:begin

dout[7]=din;

dout[6:0]=7"b0;

end
endcase
end

endmodule

Test bench module demux1x8_tb

Inputs: Nil
Outputs: Nil

11

Reference Designs

Function: The test bench applies random values to 3-bit select

lines and check the dout. The waveform demux tb.vcd can be observed

using waveform viewer.
Test bench file: demuxlx8 tb.v
module demuxlx8 tb;

// Inputs
reg clk;
reg rstn;
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reg en;
reg [2:0] sel;
reg din;

// Outputs

wire [7:0] dout;

// clock generation

always #5 clk =

initial begin

clk = 0;

rstn = 0;

en = 0;

//$display ("------—--
#10 rstn = 0;

#10 rstn = 1;

en = 1;

~clk,; // toggle clock for every 5 ticks

sel=3'b000; din = 1'bl;

#10 sel=3'b001;
#10 sel=3'b010;
#10 sel=3'b011;
#10 sel=3'b100;
#10 sel=3'b101;
#10 sel=3'b110;
#10 sel=3'bl1l1l;

#100 Sfinish;
end

demuxIx8 uut (
.clk(clk),
.rstn(rstn),
.en(en),
.sel (sel),
.din(din),
.dout (dout)
)7

initial

begin

din
din
din
din
din
din
din

1'bl;
1'bl;
1'bl;
1'bl;
1'bl;
1'bl;
1'bl;

Started

sdumpfile ("demux1x8 tb.ved") ;
sdumpvars (0,demux1x8 tb) ;

end

253
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endmodule

w a0

Er| Cursor-Baseline = 115ns

Baseline = 0

Name B~ Cursor @~

& din

BT self2:0]
& dout[7:0]

4:2 encoder

Inputs: 4-bit din

Outputs: 2-bit dout

Function: The design encodes 4-bit din
Design file: encoder4x2.v

/**************************************

// Module starts encoding 4-bit din

11 Reference Designs

// This 1is combinational block which doesn’t require clock and
reset. But clock used to latch the output.//
//User can refer to any Verilog HDL language book to understand the

syntax of commands. //
***************************************/
//4:2 encoder
module encoderdx2 (

din,clk,

dout,rstn,

en

input en;// active high enable

input clk;// clock input of the design
input rstn;// avtive low reset

input [3:0]din;// 4 bit input data
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wire en;
wire rstn;
wire [3:0]din;

reg [1:0]dout;

// for every positive edge of the clock below operation has to
take place

always @( posedge clk or negedge rstn)

begin

if(!rstn)

dout=2"'b00;

else 1if(en)

case (din)

4'b0001 :dout=2"b00;,
4'p0010:dout=2"b01;
4'p0100:dout=2"'b10;
4'p1000:dout=2"'b11;
default dout=2'b00;
endcase

end

endmodule

Test bench module encoder4x2_tb

Inputs: Nil

Outputs: Nil

Function: The test bench applies random values to 4-bit din and
check the encoded 2-bit dout. The waveform encoder4x2 tb.vcd can
be observed using waveform viewer.

Test bench file: encoder4x2 tb.v

module encoder4x2 tb;

// Inputs

reg [3:0] din;
reg en;

reg clk;

reg rstn;
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// Outputs

wire [1:0] dout;

// clock generation

always #5 clk = ~clk; // toggle clock for every 5 ticks

initial begin
// Initialize Inputs

clk = 0;

rstn = 1;

en = 0;
//Sdisplay ("-———————- Test Started —--------- "),
#10 rstn = 0;

#10 rstn = 1;

en = 1;

din = 4'b0001;

#10 din = 4'b0010;,
#10 din = 4'b0100;,
#10 din = 4'b1000;

#100 Sfinish;
end
encoder4x2 uut (
.clk(clk),
.din(din),
.dout (dout) ,
.rstn(rstn),
.en(en)

) ;

initial

begin

sdumpfile ("encoderdx2 tb.vcd");
sdumpvars (0,encoder4x2 tb);
end
endmodule

|Name o> Cursor o= [

L
- dinf30)

- dout[l 0]
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2:4 decoder

Inputs: 2-bit din
Outputs: 4-bit dout
Function: The design decodes 2-bit din.
Design file: decoderZx4.v
/**************************************
// Module starts decoding 2-bit din
// This 1is combinational block which doesn’t require clock and
reset, but used //
// to latch the output //
//User can refer to any Verilog HDL language book to understand the
syntax of commands. //
***************************************/
//2:4 decoder
module decoder2x4(
clk,
rstn,
en,
din,
dout
);

input en;// active high enable

input clk;// input clock of the design
input rstn;// active low reset

input [1:0]din;// input data

[ output ports-—-—--—-—-—-—----——----
output [3:0]dout;// output data
[ input datatypes-—-----————————--

wire clk;
wire en;
wire rstn;

wire [1:0]din;

reg [3:0]dout;

// for every positive edge of the clock below operation take place
always @( posedge clk or negedge rstn)

begin

if(!rstn)// check condition reset=0, reset the dout to 0
dout=4"'b0000;

else if(en)

case (din)
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2'b00:dout=4"'b0001;
2'b01:dout=4"'b0010;
2'b10:dout=4"'b0100,;
2'bl1:dout=4"'b1000;
default dout=4'b0000;
endcase

end

endmodule

Test bench module decoder2x4_tb

Inputs: Nil

Outputs: Nil

Function: The test bench applies random values to 2-bit din and
check the decoded 4-bit dout. The waveform decoder tb.vcd can be
observed using waveform viewer.

Test bench file: decoder2x4 tb.v

module decoder2x4 tb;

// Inputs

reg clk;

reg rstn;

reg en;

reg [1:0] din;

// Outputs

wire [3:0] dout;

// clock generation
always #5 clk = ~clk; // toggle clock for every 5 ticks

initial begin
// Initialize Inputs

clk = 0;

rstn = 1;

en = 0;
//Sdisplay ("-—-——=———-- Test Started —--------- "),
#10 rstn = 0;

#10 rstn = 1;

en = 1;

din = 2'b00;

#10 din = 2'b01;
#10 din = 2'b10;
#10 din = 2'bll;
#100 Sfinish;
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end

decoder uut (
.clk(clk),
.rstn(rstn),
.en(en),
.din(din),
.dout (dout)
);

initial

begin
$dumpﬁle("decoder2x4_tb.vcd");
sdumpvars (0,decoder2x4 tb) ;
end

endmodule

Name &> Cursor &~

- din1 0]
T dout[3:0]

2x2 Matrix Multiplication

2x2 matrix multiplication

Inputs: two 32-bit operands in A and B

Outputs: Res;

Function: The design performs matrix multiplication of two oper-
ands of 32-bit binary numbers stored in A and B both 32-bit regis-
ters representing the operands. The result is stored in 32-bit
Res 32 register.

Design file: matrix2x2 mult.v
/**************************************

// Module works for 2x2 matrix multiplication. Both the inputs are
converted to 1D to 3D //

// array and becomes and each rows and columns will have 8 bit. //
// This 1is combinational block which doesn’t require clock and
reset //

//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/

//2x2 matrix multiplication

module matrix2x2 mult (A, B, Res, clk, rstn, en);
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input clk, rstn, en;

input [31:0] A;

input [31:0] B;
[/ mmmm e output port—----—---—--—---
output [31:0] Res;

reg [31:0] Res;

reg [7:0] Al [0:1][0:1];
reg [7:0] Bl [0:1][0:1];
reg [7:0] Resl [0:1][0:1];

//for ever A and B value below format should be adopted
always@ ( A or B )

begin
{A1[0][0],A1[0][1],AL1[1][0],Al[1][1]} = A;
{B1[0][0],B1[0][1],B1[1][0],B1[1][1]} = B;

end
//for every posedge of clock below operation should take place

always@ ( posedge clk or negedge rstn )

begin

if(!rstn) begin
{Res1[0][0],Res1[0][1],Res1[1][0],Res1[1][1]} = 32'd0;
end

else

if(en) begin

Res1[0][0] =(A1[0][0]*B1[0][0])
Res1[0][1] =(A1[0][0]*B1[0][1])
Res1[1][0] =(A1[1][0]*B1[0][0])
Resl[1][1] =(A1[1][0]*B1[0][1])

(A1[0][1]*B1[1][0]);
(A1[0][1]*BI1[1][1])/
(A1[1][1]*BI1[1][0]);
(AL[1][1]*B1[1][1])

+ o+ + o+

Res = {Resl1[0][0],Res1[0][1],Res1[1][0],Res1[1][1]};
end

end

endmodule

Test bench module matrix2x2_mult_tb

Inputs: Nil
Outputs: Nil
Function: The test bench applies random values of A and B and
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result is stored in 32-bit Res. The waveform matrix2x2 mult tb.vcd
can be observed using waveform viewer.
Test bench file: matrix2x2 mult tb.v
module matrix2x2 tb();

reg [31:0] A;

reg [31:0] B;

reg clk;

reg rstn;

reg en;

// Outputs

wire [31:0] Res;

always #5 clk = ~clk;

initial begin

clk =0;

rstn =0;

A= 0;
B = 0;

#10 rstn =0;

#10 rstn =1;

#10 en =1;
A=32'b00000001000000010000000100000001 ;

#10 B=32'b00000001000000010000000100000001 ;

#10 A=32'b00000010000000100000001000000010;
#10 B=32'b00000010000000100000001000000010;
#100 Sfinish;

end

matrix2x2 mult uut (

LA(A),

.B(B),

.Res (Res),

.clk(clk),

.rstn(rstn),

.en(en)

)7

initial begin

sdumpfile ("matrix2x2 mult tb.vced");
sdumpvars (0, matrix2x2 mult tb);

end
endmodule
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[ Baseine =0
P Cursor-Baseling = = 20n3

01010101
01010101

2-bit comparator

2-bit comparator

Inputs: A and B

Outputs: a-greater than-b, a-equal to-b, a-lesser than-b
Function: The design compares inputs A and B. If A is greater than
B, the result is stored in a grtr b. If A is lesser than B, the
result 1is stored in a lesr b. If A is equal to B, the result is
stored in a eql b.

Design file: comparator.v
/**************************************
// Module compares the 2-bit input A and B and gives the result
whether A is greater than b //
//or A lesser than B or A equal to B.This is combinational block
which doesn’t require //
//clock and reset. User can refer to any Verilog HDL language book
to understand the //
//syntax of commands. //
***************************************/
// Comparator design
module comparator (
clk,
rstn,

en,

input clk;// input clock of the design
input rstn;// active low reset

input en;// active high enable

input [1:0] A;

input [1:0] B;
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output a grtr b;
output a lsr b;
output a eql b;

wire clk;
wire rstn;
wire en;

wire [1:0]A;
wire [1:0] B;

reg a grtr b;

reg a lsr b;

reg a eql b;

// at every posedge of the clock
always@ (posedge clk or negedge rstn)

begin

if(!rstn)// reset all the values to zero if rstn is 0
begin

a grtr b = 1'b0;

a lsr b = 1'b0;

a eql b = 1'b0;

end

else if (en)// if enable is high start comparing the inputs

begin

a grtr b = ((A[1]&(~B[1]))| (A[0]&(~B[0])&(~B[1]))| (A[O]J&A[1]&
(~B[0]))) 7

a lsr b = (((~A[1])&B[1]) ]| ((~A[0])&A[1]&B[1])| ((~A[1])&B[0
J&B[1]));

a eql b =(((~A[0])&(~A[1])&(~B[0])&(~B[1]))| ((A[0]&(~&B[0])& (~B[
1])) 1 (A[O]J&A[1]&B[0]&B[1]) | ((~A[0])&A[1]&(~B[0])&B[1])));

end

end

endmodule

Test bench module comparator_tb

Inputs: Nil

Outputs: Nil

Function: The test bench applies random values to A and B and
checks the results of comparison between them. The waveform com-
partor tb.vcd can be observed using waveform viewer.

Test bench file: comparator tb
module comparator tb;
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// Inputs
reg clk;

reg rstn;
reg en;

reg [1:0] A;
reg [1:0] B;

// Outputs

wire a grtr b;
wire a lsr b;
wire a eql b;

// clock generation

11
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always #5 clk = ~clk; // toggle clock for every 5 ticks

initial begin

// Initialize Inputs
clk = 0;

rstn = 1;

A= 0;
B = 0;

#10 rstn
#10 rstn
en = 1;

I
= o
N

A\l

A=2'b00,;B=2"b00;
#10 A=2'b01;B=2"'b10;
#10 A=2'b10;B=2"'b00;
#10 A=2'bl1;B=2"'bll;
#10 A=2'b10,;B=2"'b01;

#100 Sfinish;
end

comparator uut (
.clk(clk),
.rstn(rstn),
.en(en),

LA(A),

.B(B),
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.a grtr b(a grtr b),

.a Isr b(a 1lsr b),

.a eql b(a eql b)

);

initial

begin
$dumpﬁle("comparatoritb.vcd");
$dumpvars(0,comparator;tb);
end

endmodule

Name o~ cusor o~ (U

Finite state machine-based sequence detector (pattern: 10101)

Sequence detector of 10101 without overlap

Inputs: serial input data

Outputs: seq detected

Function: The design works to detect the sequence 10101 for which
the output seq detected will be high.

Design file: fsm.v

/**************************************

// Module works only to detect the pattern 10101

// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/

// Sequence detector of 10101 without overlap

module fsm (

N clock reset--—-————————-————-- //
clk ,

reset n ,
[/ = Input-—--=-=-===——————————--- //
input data ,
[ mmm e Output---——=—————=—————————————— //

seq detected
)7
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input clk ,
reset n ;

[/ e Input-—=-==——==———-————-——— /7
input input data ;
[ mmmm e Output---——=——————————————————— //

output seq detected ;

reg [2:0] curr state ,
next state ;

parameter IDLE =3'd0 ,
SEQ A =3'dl ,
SEQ B =3'd2 ,
SEQ C =3'd3 ,
SEQ D =3'd4 ;

always@ ( curr state ,
input data
)

begin
case (curr state)

IDLE : if (input data)
next state= SEQ A ;
else

next state= IDLE;

SEQ A : if (!input data)
next state =SEQ B ;
else

next state =SEQ A ;

SEQ B : if (input data)
next state = SEQ C ;
else

next state =IDLE ;

SEQ C : if (!input data)
next state = SEQ D;
else

next state=SEQ A ;
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SEQ D : if (input data )

next state = SEQ A;

else

next state = IDLE ;

default : next state = IDLE ;
endcase

end

always@ (posedge clk or negedge reset n)
begin

if (!reset n) begin

curr state<=3'd0 ;

end

else begin

curr state<=next state;
end
end

assign seq detected = (curr state==SEQ D && input data);
endmodule

Test bench module fsm_tb

Inputs: Nil

Outputs: Nil

Function: The test bench applies random values and detects the
sequence. The waveform fsm tb.vcd can be observed using wave-
form viewer.

Test bench file: fsm tb.v

module fsm tb;

reg Clk;

reg Reset n;

reg [8:0] pattern;
reg data in;

wire seq detected;

//clock generation
always #5 Clk = ~Clk;

initial



268

begin

Clk = 0;

Reset n = 1;

Sdisplay ("--
#10 Reset n
#10 Reset n

Sdisplay ("---

@

(posedge Clk) ;
pattern = 9'b111010101;

#10 data in = pattern[8];

#10 data in =
#10 data in =
#10 data in =
#10 data in =
#10 data in =
#10 data in =
#10 data in =
#10 data in =

Sdisplay ("---

@ (posedge C

pattern([7];
pattern[6];
pattern([5];
pattern([4];
pattern[3];
pattern[2];
pattern([1];
pattern[0] ;

1k) ;

pattern = 9'b110010101;

data in = pa

#10 data in =
#10 data in =
#10 data in =
#10 data in =
#10 data in =
#10 data in =
#10 data in =
#10 data in =

Sdisplay ("---

ttern[8];

pattern([7];
pattern[6];
pattern([5];
pattern([4];
pattern[3];
pattern[2];
pattern([1];
pattern[0] ;

pattern = 9'b101010101;
@ (posedge Clk);

#10 data in =
#10 data in =
#10 data in =
#10 data in =
#10 data in =

pattern[8];
pattern([7];
pattern[6];
pattern([5];
pattern([4];

11
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________ ");

________ ");

________ ");
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#10 data in = pattern[3];
#10 data in = pattern[2];
#10 data in = pattern[1];
#10 data in = pattern[0];

sdisplay ("--------- Test Ended --------- ") ;
#1000 Sfinish;
end

fsm u_fsm(

.clk(Clk), // Clock input of the design

.reset n(Reset n),// active low, synchronous Reset input
.input data(data in),// Input data bit.

.seq detected(seq detected)// sequence detected

);// End of port 1list

initial

begin
sdumpfile ("fsm tb.ved");
sdumpvars (0,fsm tb) ;
end
endmodule

EF| Cursor-Basline v = 528ns

MName o

1_10010101 1_01010101

Linear feedback shift register

Polynomial 1+x+ x4

Inputs: en

Outputs: count 4

Function: The design works for polynomial l+x+x4. The output gen-
erates pseudorandom numbers {count 4}. We cannot predict next count.
Design file: 1fsr.v

/**************************************

// Module works for the polynomial l+x+x4. //

// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/
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module 1fsr(
clk,
en,
reset n,
count
)7
input clk;
input reset n;
input en;
output [3:0] count;
reg [3:0] count;
wire feedback;

assign feedback =(count[3]"count[0]) ;
always @ (posedge clk or negedge reset n)
begin

if(! reset n)

count =4'dl;

else

if(en)

count ={count[2:0],feedback},
end

endmodule

Test bench module Ifsr_tb

Inputs: Nil
Outputs: Nil

Reference Designs

Function: The test bench applies random values and detect the 4-bit

counter output for polynomial 1+x+x4 . The waveform lfsr tb.vcd

can be observed using waveform viewer.

Test bench file: lfsr tb.v

module 1fsr tb();
reg clk;

reg reset n;

reg en;

wire [3:0] count;

1fsr ul (
.clk(clk),
.reset n(reset n),
.en(en),
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.count (count)
) ;
initial begin
clk=0;
forever #5 clk=~clk;
end

initial begin

#10;

@ (posedge clk)
reset n =0;

en=0;

#10;

reset n =1;

en=1;

#100 Sfinish;

end

initial begin
sdumpfile ("1fsr tb.vcd");
sdumpvars (0,1fsr tb);
end

endmodule

Hour-minute-second timer

Inputs: en

Outputs: sec 6,min 6,hour 5.

Function: When reset is high, all second, minute, and hour becomes
zeros. When reset is 0, second starts incrementing if second = 59
second becomes zero and minutes start incrementing, when minutes =
59 minutes become 0 and hours start incrementing.

Design file: timer.v

/**************************************

// Module increments second followed minutes followed by hours.
// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/
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module timer (
clk, // input clock
second,// second output
minute,// minute output
hour, // hour output
rstn // active low reset

)7

input clk;
input rstn;

output [5:0] second;
output [5:0] minute;
output [4:0] hour;

reg [5:0] second;
reg [5:0] minute;
reg [4:0] hour;

//this block starts for every posedge of the clock
always @ (posedge clk)
begin
if(rstn) // for every rising edge of the clock if reset is 1 load
0 to second minute hour
begin
second <=6'd0;
minute <= 6'd0;
hour <= 5'd0;
end

else 1f (second == 6'd59)

begin

second <= 6'd0;// check if second = 59 reset second to zero
1f (minute == 6'd59)

begin

minute <= 6'd0;// check if minute = 59 reset minute to zero
if (hour == 5'd23)

begin

hour <= 5'd0;//check if hour = 23 reset hour to zero
end
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else

begin

hour <= hour + 5'dl;

end

end

else

begin

minute <= minute + 6'dIl;
end

end

else

begin

second <= second + 6'dl;
end

end

endmodule

Test bench module timer_tb

Inputs: Nil
Outputs: Nil
Function: The test bench applies random values and checks the
results. The waveform timer tb.vcd can be observed using wave-

form viewer.

Test bench file: timer tb.v

module timer tb;

// Inputs
reg clk;
reg rstn;

// Outputs

wire [5:0] second;
wire [5:0] minute;
wire [4:0] hour;

// clock generation
always #5 clk = ~clk; // toggle clock for every 5 ticks
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initial begin

// Initialize Inputs
clk = 0;

rstn = 1;

//Sdisplay ("-—-——=————= Test Started —--------- "),
#10 rstn = 1
#10 rstn = 0;

#3000000 $finish;
end

timer uut (
.clk(clk),
.second (second) ,
.minute (minute),
.hour (hour) ,
.rstn(rstn)

) ;

initial

begin

sdumpfile ("timer tb.vcd");
sdumpvars (0, timer tb);
end
endmodule

“ ]
£ Curoe: Bl = 0150
o= Curite &=

5

Self-sync scrambler

Inputs: bit in

Outputs: bit out

Function: This is a 7-bit scrambler for 802.11b synchronous active
high reset and with active high enable signal.

Design file: self sync scrambler.v,
/**************************************

// Module performs linear feedback shift register for 1+x3+x6

// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/
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module self sync scrambler (
clock , // Clock input of the design
resetn , // active low, synchronous Reset input
enable , // Active high enable signal
bit in, // Input data bit.
bit out // Scrambled output bit.
)7 // End of port list

input clock ;
input resetn ;
input enable ;
input bit in;

// By rule all the input ports should be wires
wire clock ;
wire resetn ;

wire enable ;

// Output port can be a storage element (reg) or a wire

reg [6:0] state out ;

wire bit out;

assign feedback = (bit in * state out[6] * state out[3]);

assign bit out = feedback;

// We trigger the below block with respect to positive

// edge of the clock.
always @ (negedge resetn or posedge clock)
begin : SCRAMBLER // Block Name

if (resetn == 1'b0) begin
state out <= #1 7'b1111111;
end

// If enable is active, then we tick the state.
else 1if (enable == 1'bl) begin

state out <= {state out[5:0], feedback};

end

end // block: SCRAMBLER

endmodule

275
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Design file: self sync descrambler.v

Inputs: bit in

Outputs: bit out

Function: This 1is a 7-bit descrambler for 802.11b synchronous
active high reset and with active high enable signal.
/**************************************

// Module performs linear feedback shift register for 1+x3+x6

// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/
module self sync descrambler (

clock , // Clock input of the design

resetn , // active high, synchronous Reset input

enable , // Active high enable signal

bit in, // Input data bit.

bit out // Scrambled output bit.

)7 // End of port list

input clock ;
input resetn ;
input enable ;
input bit in;

// By rule all the input ports should be wires
wire clock ;
wire resetn ;

wire enable ;

// Output port can be a storage element (reg) or a wire
reg [6:0] state out ;
reg bit out;

assign feedback = (bit in * state out[6] * state out[3]);

// We trigger the below block with respect to positive
// edge of the clock.

always @ (negedge resetn or posedge clock)

begin : DESCRAMBLER // Block Name

if (resetn == 1'b0) begin
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//Self synching, so a reset should be to the unknown
//This might cause a problem in synthesis.

state out <= #1 7'bXXXXXXX;

end

else if (enable == 1'bl) begin

state out <= {state out[5:0],bit in};

bit out <= feedback;

end

end // block: DESCRAMBLER
endmodule

Test bench module self_sync_scr_tb_top

Inputs: Nil
Outputs: Nil

277

state.

Function: The test bench applies random values for pattern and

checks the results by generating match signal. The waveform self

sync_scr tb top.vcd can be observed using waveform viewer.

Test bench file: self sync scr tb top.v
Moduleself sync scr tb top;

reg Clk;

reg Resetn;

reg Enb;

reg [7:0] Pattern;
reg [7:0] Dataln;
reg [7:0] DataOut;
integer errCnt;
integer CompFlag;
reg Match;

wire Din;

wire Sout;,

wire Dout;

//clock generation
always #5 Clk = ~Clk;

assign Din = DataIn[7];

initial

begin
Clk = 0;
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Resetn = 1;

Enb = 0;

CompFlag =0;

errCnt = 0;

Match = 0;

Sdisplay ("-——-—————- Test Started —--—------- "),
#10 Resetn = 0;

#10 Resetn = 1;

Sdisplay ("-——-—————- Sending Data Patternn : 0x55 —-—-———----- ") ;
repeat (10) @ (posedge Clk);

Pattern = 8'h55;

Dataln = Pattern;

#10 Enb = 1;

repeat (100) begin

@ (posedge Clk) #1 DatalIn = {DatalIn[6:0],DataIn[7]};

end

repeat (10) @ (posedge Clk)Enb = 0;

Sdisplay ("-—-—-—-————- Sending Data Patternn : 0Ox1]1 —-—-——-—-----= ") ;
repeat (10) @ (posedge Clk);
Enb = 1;

Pattern = 8'hll;

Dataln = Pattern;

repeat (100) begin

@ (posedge Clk) #1 Dataln = {DatalIn[6:0],DataIn[7]};
end

repeat (10) @ (posedge Clk)Enb = 0;

CompFlag = 0;

Sdisplay ("-—-—-—-————- Sending Data Patternn : 0x22 —-—-———-----= ") ;
repeat (10) @ (posedge Clk);
Enb = 1;

Pattern = 8'h22;

Dataln = Pattern;

repeat (100) begin

@ (posedge Clk) #1 Dataln = {DatalIn([6:0],DataIn[7]};
end

repeat (10) @ (posedge Clk)Enb = 0;

CompFlag = 0;

Sdisplay ("-—-—-—-————- Sending Data Patternn : 0x33 —-—-———----- ") ;
repeat (10) @ (posedge Clk);
Enb = 1;

Pattern = 8'h33;,
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Dataln = Pattern;

repeat (100) begin

@ (posedge Clk) #1 Dataln = {DatalIn[6:0],DataIn[7]};
end

repeat (10) @ (posedge Clk)Enb = 0;

CompFlag = 0;

Sdisplay ("-——-—————- Sending Data Patternn : 0x44 --———----- ") ;
repeat (10) @ (posedge Clk);
Enb = 1;

Pattern = 8'h44;

Dataln = Pattern;

repeat (100) begin

@ (posedge Clk) #1 Dataln = {DatalIn[6:0],DataIn[7]};
end

repeat (10) @ (posedge Clk)Enb = 0;

CompFlag = 0;

sdisplay ("--------- Test Ended --------- "),
#1000 Sfinish;
end

always@ (posedge Clk)
begin
if(Enb) begin
DataOut = {DataOut[6:0],Dout};

#1 1f(DataOut == Pattern) Match = 1;
else Match = 0;

end

else DataOut = 8'hXX;
end

self sync scrambler u scarmb (
.clock (Clk), // Clock input of the design
.resetn (Resetn), // active low, synchronous Reset input
.enable (Enb), // Active high enable signal
.bit in (Din) , // Input data bit.
.bit out (Sout) // Scrambled output bit.
)7 // End of port list

self sync descrambler u descramb (
.clock (Clk), // Clock input of the design
.resetn (Resetn), // active low, synchronous Reset input
.enable (Enb), // Active high enable signal
.bit _in (Sout), // Input data bit.
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.bit out (Dout) // De-Scrambled output bit.
)7 // End of port list

initial

begin

sdumpfile ("self sync scr tb top.vecd");
sdumpvars (0,self sync scr tb top);
end
endmodule

Y
-
=
-
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-

Side stream scrambler

Inputs: bit in

Outputs: bit out

Function: This is a 32-bit scrambler for 802.11b synchronous active
high reset and with active high enable signal.

Design file: side stream scrambler.v,
/**************************************

// Module performs 1fsr for 1+x12+x32

// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/
module side stream scrambler ( clk ,

reset n ,

en ,

init seed ,

data in ,

data out ,

data out valid

)7

input clk ,

reset n ;

input en ;
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input [32:0] init seed ;

input data in ;

output reg data out ,
data out valid ;

reg [32:0] data out reg ;

wire xor valuel;

always@ (posedge clk or negedge reset n)
begin

if (!reset n) begin

data out reg<=33'd0;

data out valid<=1'd0;

end

else begin

data out valid<=en;

data out<=xor valuel;

i1f (en)

data out reg<={data out reg[31:0],xor valuel};
else

data out reg<=init seed;

end
end

assign xor value= (data out reg[32]"data out reg[12]);

assign xor valuel=(data in”xor value);

endmodule

Design file: side stream descrambler.v

Inputs: bit in

Outputs: bit out

Function: This 1is a 32bit descrambler for 802.11b Synchronous
active high reset and with active high enable signal
/**************************************

// Module performs 1lfsr for 1+x12+x32

// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/

module side stream descrambler ( clk ,
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reset n ,

en ,

init seed ,
data in ,

data out ,
data out valid

)7

input clk ,
reset n ;

input en ;

input [32:0] init seed ;

input data in ;

output reg data out ,
data out valid ;

reg [32:0] data out reg ;

wire xor valuel;

always@ (posedge clk or negedge reset n)
begin

if (!reset n) begin

data out reg<=33'd0;

data out valid<=1'd0;

end

else begin

data out valid<=en;

data out<=xor valuel;

i1f (en)

data out reg<={data out reg[31:0],data in};
else

data out reg<=init seed;

end
end

assign xor value= (data out reg[32]"data out reg[12]);

assign xor valuel=(data in”xor value);

endmodule
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Test bench module side_stream_scr_tb_top

Inputs: Nil

Outputs: Nil

Function: : The test bench applies random values for pattern and
checks the results by generating match signal. The waveform tb
top.vcd can be observed using waveform viewer.

Test bench file: side stream scr tb.v

module side stream scr tb top;
reg Clk;

reg Resetn;

reg Enb;

reg [32:0] Pattern;
reg [32:0] Dataln;
reg [32:0] DataOut;
integer errCnt;
integer CompFlag;
reg Match;

wire Din;

wire Sout;

wire Dout;

//clock generation
always #5 Clk = ~Clk;
assign Din = DatalIn[32];

initial

begin

Clk = 0;
Resetn = 1;
Enb = 0;
CompFlag =0;
errCnt = 0;
Match = 0;
sdisplay ("-—-—-—------ Test Started --------- ") ;
#10 Resetn = 0;

#10 Resetn = 1

Sdisplay ("-—-=-=-—==-—- Sending Data Patternn : 0x55 --—-—-—----- ") ;
repeat (1) @ (posedge Clk);

Pattern = 33'h155555555;

DataIn = Pattern;

#1 Enb = 1;

repeat (100) begin
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@ (posedge Clk) #5 Dataln = {DatalIn[31:0],DataIn[32]};
end
//repeat (10) @ (posedge Clk)Enb = 0;

Sdisplay ("-——-—————- Sending Data Patternn : 0x1]1 —-—-———-----= ") ;
repeat (10) @ (posedge Clk);
Enb = 1;

Pattern = 33'h111111111;

Dataln = Pattern;

repeat (100) begin

@ (posedge Clk) #5 Dataln = {DatalIn([31:0],DataIn[32]};
end

//repeat (10) @ (posedge Clk)Enb = 0;

CompFlag = 0;

Sdisplay ("-—-—-—————- Sending Data Patternn : 0x22 —-—-——-—-----= ") ;
repeat (10) @ (posedge Clk);
Enb = 1;

Pattern = 33'h122222222;

Dataln = Pattern;

repeat (100) begin

@ (posedge Clk) #5 Dataln = {DatalIn([31:0],DataIn[32]};
end

CompFlag = 0;

Sdisplay ("-—-—-—-————- Sending Data Patternn : 0x33 —-—-———----- ") ;
repeat (10) @ (posedge Clk);
Enb = 1;

Pattern = 33'h133333333;

Dataln = Pattern;

repeat (100) begin

@ (posedge Clk) #1 Dataln = {DatalIn[31:0],DatalIn[32]};
end

// repeat (10) @ (posedge Clk)Enb = 0;

CompFlag = 0;

Sdisplay ("-—-—-—————- Sending Data Patternn : 0x44 —-—-———----- ") ;
repeat (10) @ (posedge Clk);
Enb = 1;

Pattern = 33'h144444444;
Dataln = Pattern;
repeat (100) begin
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@ (posedge Clk) #1 DatalIn = {Dataln[31
end
CompFlag = 0;
Sdisplay ("-——-—————- Test Ended ------—-
#10000 $finish;
end

always@ (posedge Clk)
begin
if(Enb) begin
DataOut {DataOut [32:0] ,Dout};
#1 1f(DataOut == Pattern) Match
else Match 0;
end
else DataOut
end

1;

33 "hXXXXXXXX;

side stream scrambler ul( .clk (Clk) ,
.reset n(Resetn) ,

.en (Enb) ,

.init seed (33'h155555555) ,

.data in (Din) ,

.data out (Sout) ,

.data out valid ()

)7

side stream descrambler u2( .clk (Clk)
.reset n(Resetn) ,

.en (Enb) ,

.init seed (33'hXXXXXXXXX) ,

.data in (Sout) ,

.data out (Dout) ,

.data out valid ()

)7

initial

begin

285

:0],DataIn[32]};

sdumpfile ("side stream scr tb top.vcd");

sdumpvars (0,side stream scr tb top);
end
endmodule
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Ty

2 %

Colored ball puzzle box

Inputs: red blue vid

Outputs: number of chance valid, number of chance count, pickup of
ball is wrong, pickup ball from red blue box

Function: This works based on FSM if current state being idle and
config interface being high and then ball pickup from red-blue box
will be high. If current state being OUT put state, then number of
chance valid will be high. If current state being error state,
output pickup ball is wrong is high.

Design file: puzzle.v,

/**************************************

// Module works based on FSM

// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/

module puzzle 3box (

clk ,
reset n ,
cfg start algo , //config interface

[/ mmmm e Input interface-—-—--————————————————————— //
red blue vid ,
[ mmm e output interface----—--—-——-————————————- //

ball pickup from red blue box ,
number of chance vid ,
number of chance count ,
pickup of ball is wrong

)7

input clk ,
reset n ;
input cfg start algo ;

/) mmmm e Input interface-------—————————————————- //
input red blue vld ;
/) mmm e output interface-----------———----————- //

output number of chance vld ;
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output reg [31:0] number of chance count ;
output ball pickup from red blue box ,

pickup of ball is wrong ;

reg [1:0] curr state, next state;

parameter IDLE

= 2'd0 ,

PICKUP RED BLUE = 2'dl ,
OUTPUT STATE = 2'd2 ,
ERROR_STATE = 2'd3 ;

always@( cfg start algo ,
red blue vid

)
begin

case (curr state)

IDLE : if (cfg start algo)
next state= PICKUP RED BLUE;

else

next state

PICKUP RED BLUE

next state
else

next state

OUTPUT STATE
ERROR STATE

default
endcase
end

always@ (posedge clk or negedge reset n)

begin

IDLE ;

ERROR_STATE;
next state

next state

if (!reset n) begin

curr state=2'd0 ;

IDLE
IDLE;

next state =IDLE ;

number of chance count<=32'd0;

end

else begin

curr state<=next state ;

if ( red blue vid )
OUTPUT STATE ;

7

287
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if (curr state== PICKUP RED BLUE )

number of chance count<=number of chance count+32'dl;
else if (curr state== OUTPUT STATE)

number of chance count<=32'd0 ;

end

end

assign ball pickup from red blue box = (curr state == IDLE &&
cfg start algo);

assign number of chance vld = (curr state==OUTPUT STATE) ;

assign pickup of ball is wrong = (curr state ==ERROR STATE) ;
endmodule

Test bench module puzzle3box_tb

Inputs: Nil

Outputs: Nil

Function: The test bench applies random values of input and checks
for the result. The waveform puzzle3box tb.vcd can be observed
using waveform viewer.

Test bench file: puzzle3box tb.v

module puzzle3box tb;

reg clk;

reg reset n;

reg cfg start algo;

reg red blue vld;

wire [31:0] number of chance count;
wire number of chance vld;

wire pickup of ball is wrong;

wire ball pickup from red blue box;

always #5 clk=~clk;
initial begin

clk =0;

reset n = 0;

cfg start algo = 0;
red blue vild = 0;

#10 reset n =0;
#10 reset n =1;
cfg start algo = 1;
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#10 red blue vld =1;

I
(=)
N,

#10 cfg start algo =

Il
~
S,

#10 cfg start algo
#10 red blue vld =0;

#100 Sfinish;

end

puzzle 3box uut (
.clk(clk),
.reset n(reset n),
.cfg start algo(cfg start algo),
.red blue vld(red blue vld),
.ball pickup from red blue box(ball pickup from red blue box),
.number of chance vld(number of chance vld),
.number of chance count (number of chance count),
.pickup of ball is wrong (pickup of ball is wrong)
);

initial begin

sdumpfile ("puzzle3box tb.vecd");
sdumpvars (0,puzzle3box tb);
end

endmodule

& Baselne =0

Eri Cursor-B e S Bageline = 0

Scratchpad registers

Inputs: addr sel, wr rd addr 3, write data 32

Outputs: read data 32

Function: 8-location 32-bit scratchpad resister set. The design
reads the data written at the particular address.

Design file: scratch pad reg.v

/**************************************
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// Module reads the 32 data written from the 3-bit address.

// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of. //

// commands

***************************************/

module scratch pad reg(

[/ mmmm e clock reset--—--——=—————————--—~- //
clk ,

reset n ,
/)= mm e SW INTERFACE-—=-—=======————————— //

addr sel ,
wr rd addr ,
write en ,
read en ,
write data ,
read data

)7

input clk ,
reset n ;

input addr sel ;

input [2:0] wr rd addr ;

input write en ,

read en ;

input [31:0] write data ;

output [31:0] read data ;

reg [31:0] regO ,
regl ,
reg2 ,
reg3 ,
reg4d ,
regb ,
reg6 ;
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wire sel0

sell
sel2
sel3
sel4
selb
sel6

assign
assign
assign
assign
assign
assign
assign

assign
(sell
(sel2
(sel3
(sel4
(selb

’

7

sel0 = (addr sel &&
sell = (addr sel &&
sel2 = (addr sel &&
sel3 = (addr sel &&
seld = (addr sel é&&
selb5 = (addr sel é&&
sel6 = (addr sel &&

read data =

&&
&&
&&
&&
&&

read en)
read en)
read en)
read en)
read en)

wr rd addr==3'd0)
wr rd addr==3'dl)
wr rd addr==3'd2)
wr rd addr==3'd3)
wr rd addr==3'd4)
wr rd addr==3'd5)
wr rd addr==3'd6)

(sel0 && read en) ? reg0

2
2
2
2

?

regl
reg2
reg3
reg4
regb

regé ;

always@ (posedge clk or negedge reset n)

begin

if (!read en) begin
reg0<=32"'d0;

end

else begin

if (write en && sel0)

regO<=write data ;

end
end

always@ (posedge clk or negedge reset n)

begin

if (!read en) begin
regl<=32'd0;

end

else begin

if (write en && sell)

291
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regl<=write data ;
end
end

always@ (posedge clk or negedge reset n)
begin

if (!read en) begin

reg2<=32'd0;

end

else begin

if (write en && sel2)

reg2<=write data ;
end
end

always@ (posedge clk or negedge reset n)
begin

if (!read en) begin

reg3<=32'd0;

end

else begin

if (write en && sel3)

reg3<=write data ;
end
end

always@ (posedge clk or negedge reset n)
begin

if (!read en) begin

reg4<=32'd0;

end

else begin

if (write en && seld)

reg4<=write data ;

end
end

Reference Designs
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always@ (posedge clk or negedge reset n)
begin

if (!read en) begin

regh<=32'd0;

end

else begin

if (write en && selb)

regb<=write data ;
end
end

always@ (posedge clk or negedge reset n)
begin

if (!read en) begin

reg6<=32'd0;

end

else begin

if (write en && sel6)

reg6<=write data ;
end
end

endmodule

Test bench module scratch_pad_reg_th

Inputs: Nil
Outputs: Nil
Function: The test bench applies random values of input and checks
for the result. The waveform scratch pad reg tb.vcd can be observed

using waveform viewer.
Test bench file: scratch pad reg tb.v
module scratch pad reg tb;

reg clk;
reg reset n ;



294

reg en;
reg addr sel;
reg

reg write en;
reg read en;

reg

[2:0] wr rd addr ;

[31:0] write data;

wire [31:0] read data;

always #5 clk=~clk;

initial
begin
clk=0;
reset n =
en = 0;
#10 reset n
#10 reset n
en=1;

0;

addr sel=1; wr rd addr=000; write en=1;
#10addr sel=1;wr rd addr=001;write en=1;

read en=1;

#10addr sel=1;

read en=1;

#10addr sel=1;

read en=1;

#10addr sel=1;

read en=1;

#10addr sel=1;

read en=1;

#10addr sel=1;

read en=1;

#10addr sel=0;

read en=1;

#10addr sel=1;

read en=1;

#10addr sel=0;

read en=1;
#100 $finish;
end

wr rd addr=010;

wr rd addr=011;

wr rd addr=100;

wr rd addr=101;

wr rd addr=110;

wr rd addr=000;

wr rd addr=110;

wr rd addr=110;

write en=1;

write en=1;

write en=1;

write en=1;

write en=1;

write en=1;

write en=1;

write en=1;

11

read en=1;

Reference Designs

write data=32'h11111111;

write data=32'h22222222;

write data=32'h33333333;

write data=32'h44444444;

write data=32'h55555555;

write data=32'h66666666;

write data=32'h77777777;

write data=32'h88888888;

write data=32'h99999999;
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scratch pad reg uut (
.clk(clk),
.reset n(reset n),
.addr sel (addr sel),
.wr rd addr (wr rd addr),
.write en(write en),
.read en(read en),
.write data(write data),
.read data(read data)

)

initial

begin

sdumpfile ("scratch pad reg tb.vecd");
sdumpvars (0,scratch pad reg tb);
end
endmodule

Configuration register

Inputs: addr sel, wr rd addr 3, write data 32

Outputs: read data 32, reg0 32,regl 32,reg2 32,reg3 32,reg4 32,r
egh 32,reg6 32

Function: The design reads the data written at the particular
address and also stores the data in 32-bit register for respective
address.

Design file: config reg.v,

/**************************************

// Module reads the 32 data written from the 3-bit address. And
stores the data in 32bit register

// This is sequential block which require clock and reset //
//User can refer to any Verilog HDL language book to understand the
syntax of commands. //

***************************************/

module config reg (
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/) mmmm e clock reset--—--——=—————————--—~- //
clk ,

reset n ,
/)= mm e SW INTERFACE-—=-—=======————————— //

addr sel ,
wr rd addr ,
write en ,
read en ,
write data ,
read data,

reg0 ,
regl ,
reg2 ,
reg3 ,
reg4 ,
regb ,
regé

)7

input clk ,
reset n ;

input addr sel ;

input [2:0] wr rd addr ;

input write en ,

read en ;

input [31:0] write data ;
output [31:0] read data ;

output reg [31:0] reg0 ,
regl ,
reg2 ,
reg3 ,
reg4d ,
regb ,
reg6 ;
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wire sel0

sell
sel2
sel3
sel4
selb
sel6

assign
assign
assign
assign
assign
assign
assign

assign
(sell
(sel2
(sel3
(sel4
(selb

’

7

sel0 = (addr sel &&
sell = (addr sel &&
sel2 = (addr sel &&
sel3 = (addr sel &&
seld = (addr sel é&&
selb5 = (addr sel é&&
sel6 = (addr sel &&

read data =

&&
&&
&&
&&
&&

read en)
read en)
read en)
read en)
read en)

wr rd addr==3'd0)
wr rd addr==3'dl)
wr rd addr==3'd2)
wr rd addr==3'd3)
wr rd addr==3'd4)
wr rd addr==3'd5)
wr rd addr==3'd6)

(sel0 && read en) ? reg0

2
2
2
2

?

regl
reg2
reg3
reg4
regb

regé ;

always@ (posedge clk or negedge reset n)

begin

if (!read en) begin
reg0<=32"'d0;

end

else begin

if (write en && sel0)

regO<=write data ;

end
end

always@ (posedge clk or negedge reset n)

begin

if (!read en) begin
regl<=32'd0;

end

else begin

if (write en && sell)

297
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regl<=write data ;
end
end

always@ (posedge clk or negedge reset n)
begin

if (!read en) begin

reg2<=32'd0;

end

else begin

if (write en && sel2)

reg2<=write data ;
end
end

always@ (posedge clk or negedge reset n)
begin

if (!read en) begin

reg3<=32'd0;

end

else begin

if (write en && sel3)

reg3<=write data ;
end
end

always@ (posedge clk or negedge reset n)
begin

if (!read en) begin

reg4<=32"'d0;

end

else begin

if (write en && seld)
reg4<=write data ;
end

end

always@ (posedge clk or negedge reset n)

Reference Designs
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begin
if (!read en) begin
reg5<=32'd0;
end

else begin

if (write en && selb)

regb<=write data ;
end
end

always@ (posedge clk or negedge reset n)
begin

if (!read en) begin

reg6<=32"'d0;

end

else begin

if (write en && sel6)

reg6<=write data ;
end
end

endmodule

Test bench module config_reg_tb

Inputs: Nil
Outputs: Nil
Function: The test bench applies random values of input and checks
for the result. The waveform config reg tb.vcd can be observed

using waveform viewer.

Test bench file: config reg tb.v

module config reg tb();
reg clk;

reg reset n;

reg addr sel;
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reg [2:0]wr rd addr;
reg write en ;

reg read en ;

reg [31:0] write data ;

wire [31:0] read data;
wire [31:0] regO;
wire[31:0] regl;
wire [31:0]reg2;
wire [31:0]reg3;
wire [31:0]reg4;
wire[31:0] regh;
wire[31:0] regé;

initial begin

clk =0;
forever #5 clk =~clk;
end

config reg ul (
.clk(clk),
.reset n(reset n),
.addr sel (addr sel),
.wr rd addr (wr rd addr),
.write en(write en),
.read en(read en),
.write data(write data),
.read data(read data),
.reg0 (reg0),
.reqgl (regl),
.reg2(reg2),
.reg3(reg3),
.reg4 (reg4),
.regb(reg5),
.reg6 (regb6)) ;

initial begin
reset n =0;
addr sel=0;
wr rd addr=0;
write en=0;
read en=0;
write data=0;

Reference Designs
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#10 reset n =1;

#10addr sel=1;wr rd addr=000;write en=1;write data=32'hAAAAAAAA;
read en=1;
#10addr sel=1;wr rd addr=001;write en=1;write data=32'h11111111;
read en=1;
#10addr sel=1;wr rd addr=010;write en=1;write data=32'h22222222;
read en=1;
#10addr sel=1;wr rd addr=011;write en=1;write data=32'h33333333;
read en=1;
#10addr sel=1;wr rd addr=100;write en=1;write data=32'h44444444;
read en=1;
#10addr sel=1;wr rd addr=101;write en=1;write data=32'h55555555;
read en=1;
#10addr sel=1;wr rd addr=110;write en=1;write data=32'h66666666;

read en=1;

#100 $finish;

end

initial

begin
sdumpfile ("config reg tb.vcd");
sdumpvars (0,config reg tb);
end

endmodule
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domain crossover

/****************************************************

s
s
s
s
s
s
s
s

* ok kA

modul

parameter FIELD WIDTHI = 1
parameter FIELD WIDTHZ = 1,
parameter FIELD WIDTH3 1
parameter FIELD WIDTH4 1

) (
rese
clk

Description ////

Signals transfer from one clock to another clock domain ////
1. Clocks can be asynchrnous or synchronous ////

2. Clocks frequency may be smaller or greater ////

3. Strobe signal out is always single cycle ////

4. Up to 4 field signals can be synchronized ////

4

4

**********************************************/

e clock transfer #/(

7

7

t n,

in,

strobe in,
field in 1,
field in 2,
field in 3,
field in 4,

clk out,

strobe out,
field out 1,
field out 2,
field out 3,
field out 4

)7

input
input
input
input
input
input
input

input

reset n;

clk iny;

strobe in;
[FIELD WIDTHI -
[FIELD WIDTHZ -
[FIELD WIDTH3 -
[FIELD WIDTH4 -

0] field in 1;
0] field in 2;
0] field in 3;
0] field in 4;

L N

clk out;

output strobe out;
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output [FIELD WIDTHI -
output [FIELD WIDTH2 -
output [FIELD WIDTH3 -
output [FIELD WIDTH4 -

0] field out 1;
0] field out 2;
0] field out 3;
0] field out 4;

[ S Y

reg strobe in d;
wire strobe in edge;

reg strobe in latch;

reg [FIELD WIDTHI 1 : 0] field latch 1;
reg [FIELD WIDTHZ2 - 1 : 0] field latch 2;
reg [FIELD WIDTH3 1 : 0] field latch 3;
reg [FIELD WIDTH4 1 : 0] field latch 4;
reg strobe transfer

1;
reg strobe transfer 2;
reg strobe out;
reg [FIELD WIDTHI -
reg [FIELD WIDTHZ
reg [FIELD WIDTH3

reg [FIELD WIDTH4 -

0] field out 1;
0] field out 2;
0] field out 3;
0] field out 4;

L T )

//clk out clocked FFs

reg strobe reclocked 1;
reg strobe reclocked 2;
reg strobe reclocked 3;

//Delay strobe in to allow edge detect
always @ (posedge clk in or negedge reset n)
begin : del p
if (reset n == 1'b0) strobe in d <= 1'b0;
else strobe in d <= strobe in;
end

// Edge detect to latch strobe itself and fields on rising edge.
assign strobe in edge = strobe in & (~strobe in d);

//strobe in latch latches the incoming strobe, and is not cleared
until the
//logic has passed over the the outgoing clock domain.
always @(posedge clk in or negedge reset n)
begin : latch in
if (reset n == 1'b0) begin
strobe in latch <= 1'b0;
strobe transfer 1 <= 1'b0;
strobe transfer 2 <= 1'b0;
end
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else begin

if (strobe in edge == 1'bl && (strobe transfer 1 == 1'bl |
strobe transfer 2 == 1'bl)) begin

// Sdisplay ("Error: strobes are too close. Logic does not
function.\n");

// $finish;

end

strobe transfer 1 <= strobe reclocked 2;

strobe transfer 2 <= strobe transfer 1;

strobe in latch <= strobe in edge | (strobe in latch &

!'(strobe transfer 2));

end
end

//Latch the field values on the incoming strobe
always @ (posedge clk in or negedge reset n)
begin : latch field

if (reset n == 1'b0) begin

field latch 1 <= 'b0;

field latch 2 <= 'b0;

field latch 3 <= 'b0;

field latch 4 <= 'b0;

end

else begin

if (strobe in edge == 1'bl) begin

field latch 1 <= field in 1;

field latch 2 <= field in 2;

field latch 3 <= field in 3;

field latch 4 <= field in 4;

end

end

end

//Retime the signals into the outgoing clock domain and generate
the output signals.

//Note that field out may partially or wholly change on the cycle
before strobe out, but

//must only be inspected by the calling code on assertion of
strobe out

always @ (posedge clk out or negedge reset n)
begin : gen outputs

if (reset n == 1'b0) begin

strobe reclocked 1 <= 1'b0;

strobe reclocked 2 <= 1'b0;
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strobe reclocked 3 <= 1'b0;

strobe out <= 1'b0;

field out 1 <= 'b0;

field out 2 <= 'bO0;

field out 3 <= 'bO0;

field out 4 <= 'b0;

end

else begin

strobe reclocked 1 <= strobe in latch; // Clock domain crossing.
strobe reclocked 2 <= strobe reclocked 1;
strobe reclocked 3 <= strobe reclocked 2;

strobe out <= strobe reclocked 2 & ! (strobe reclocked 3);

field out 1 <= field latch 1; // Clock domain crossing.
field out 2 <= field latch 2;

field out 3 <= field latch 3;

field out 4 <= field latch 4;

end

end

endmodule

Test bench module clock_transfer_tb_top

Inputs: Nil
Outputs: Nil
Function: The test bench applies random values of input fields and
sets strobe in in clk in and expects the fields to be transferred
to clk out domain. The waveform clock transfer.vcd can be observed

using waveform viewer.

Test bench file: clock transfer tb top.v

module clock transfer tb top;
reg reset n,

reg clk in,

reg strobe in,

reg field in 1,

reg field in 2,

reg field in 3,

reg field in 4,

reg clk out,
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wire strobe out;
wire field out 1;
wire field out 2;
wire field out 3;
wire field out 4;

//clock generation
always #5 clk in = ~clk in;
always #10 clk out = ~clk out;

initial
begin
clk in = 0;
clk out =0;
reset n= 1;
strobe in = 0;
Sdisplay ("-—-—-—————- Test Started —--------- "),
#10 reset n = 0;
#10 reset n = 1;

repeat (1) @ (posedge clk 1in);
field in 1 = 1'b0;

#1 field in 2 = 1'b0;

#1 field in 3 = 1'b0;

#1 field in 4 = 1'b0;

repeat (100) begin

@ (posedge clk_in) #5 field in 1 = 1'bl;
strobe in = 1’bl;

@ (posedge clk_in) #5 field in 2 = 1'bl;
@ (posedge clk_in) #5 field in 3 = 1'bl;
@ (posedge clk in) #5 field in 4 1'b1;

end

clock transfer

uul (

.reset n(reset n),
.clk in(clk in),
.strobe in(strobe in),
.field in 1 (field in 1),
.field in 2 (field in 2),

Reference Designs
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.field in 3(field in 3,
.field in 4 (field in 4,

.clk out(clk out),
.strobe out (strobe out),
.field out 1 (field out 1),
.field out 2 (field out 2),
.field out 3(field out 3),
.field out 4 (field out 4)
)7

initial

begin
$dumpﬁle("clockﬁtransfer.vcd");
sdumpvars (2,clock transfer tb top);
#1000 $finish;

end
endmodule

11.7 PartIl

11.7.1 Design Flow

This section intends to take an example design and set up the synthesis and LEC
flow. It contains design for simulation, synthesis, a constraint file used for synthesis,
a synthesis script, dummy library file, and a logic equivalence check (LEC) script
for RTL vs. gate. Other procedures in physical design require an EDA P&R tool
environment where the design files and corresponding constraint files have to be
imported and processed. Hence, the design flow with synthesis, simulation (given in
Part 1), and LEC will set the minimum design flow to continue the design further.
Advancement in the design flow actually requires library files with all EDA views
of the standard cells and modules. A design example generating output shown in
Fig. 11.2 is used to define the design flow. RTL modules with .v extension and
the design constraint file .sdc are used as design inputs for the synthesis process, and
netlist file with .vg extension is generated. The dummy library file in Liberty format
(extract with .lib extension) and layout exchange format file (.lef file format ) are
given in this section for reference only and to demonstrate the flow. The user has to
get access to actual library files for doing actual Synthesis, LEC, STA, and
P&R. Executable scripts for synthesis and LEC are given for the design example. It
is to be noted that the scripts can be customized to run on any design with suitable
modifications and by replacing the correct commands from the chosen tools.
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Top
Clock—»|
SbitCounter
cpunt[2]
Reset_n—s| |
) Outl
gount3
SbitCounter —

count1(2} | |
count2[3] | |

outl I |

Fig. 11.2 Design example with timing diagram using 5-bit counters

Design file

EE R i
HHER AR AH

This is the RTL module of a 5 bit counter design.This design will
be used to set the design flow.

The design modelled as RTL file
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FhEHEHFHHFE R H AR R R R R R R R
HhEHHEFEF S

module 5bitcounter (clk, resetn, count);
input clk, resetn;
output [4:0] count;
reg [4:0] count;

always @ (posedge clk or posedge resetn)
begin

1f (~resetn)

count <= 5'b00000;

else

count <= count + 1;

end
endmodule

module top (clk, resetn, psol, pso2, isol n, iso2 n, restorel,
restore2, outl);
input clk, reset, psol, pso2, isol n, iso2 n, restorel, restore2;
output outl;
wire [4:0] countl, count2;

S5bitcounter instl (.clk(clk), .resetn(resetn), .count (countl));;
S5bitcounter inst2(.clk(clk), .resetn(resetn), .count (count2));

assign outl = countl[3] || count2[2];

endmodule

Test bench for the example design:
module mycounter t ;

wire [3:0] count;

reg resetn,clk;

initial
clk = 1'b0;

always
#5 clk = ~clk;

top ml ( (.clk(clk), resetn(resetn), outl(outl));
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initial
begin
resetn = 1'bl ;

#15 resetn =1'b0;
#30 resetn =1'bl;
#300 Sfinish;

end

initial
begin
Sdumpfile (“top.vecd”) ;
Sdumpvars (2, top);
end

endmodule

Reference Designs

FhEHEHFHHFERH AR R R R R R R R

HhEHHEEHHS

Design constraint file in standard delay constraint (SDC) format:

It is also called Synopsys design constraint file as it was defined by Synopsys.
This file is a tool command language (TCL)-based script file and hence follows
TCL command syntax. SDC contains mainly the following constraints that are very

essential for design:

* Clock definition

¢ Generated clock (derived clock )
e Input-output delay

e Min/max delay

e False path

e Multicycle path

e Case analysis

e Disable timing arcs

For the design example, please refer to the timing needs shown in Fig. 11.3.
Since it is pre-layout, the wire load model used is zero wire load where interconnect

delays are not considered.
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Top

Combinational or
Integtd: Helay
Register Clock
SbitCounter

1
count[2]

‘ Combinational or

Inte Welay
) Outl Register

count3

Register

ShitCounter

Fig. 11.3 Use case depicting design example with possible 10 delays for definition in SDC

SDC file sample top.sdc is given below:

FHEFH A A R A R
RS

set sdc version 1.0

# define design top instance and units for parameters time and
capacitance

current design top

set units -time 1.0ns

set units -capacitance 1000.0fF

# generation of clock

set clock gating check -setup 0.0

create clock -name "clk" -add -period 8.0 -waveform {0.0 4.0}
[get ports clk]

# input-output delays expected for the design example

set input delay -clock [get clocks clk] =-add delay 0.3 [get
ports clk]

set input delay 0.5 [get ports resetn]

set output delay 0.8 [get ports outl]

#set ideal net [get nets isol n]
#set ideal network [get ports isol n]

# pre-layout uses zero wire-load model
#set wire load model "zero wireload"
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Library files
HHHEHHRH AR R R
HHHHHEHHHA

Liberty files: The extract of the library file for a Adder cell is shown here. This is
the dummy file to show the content of the lib file. It is required to have the fabricat-
able library of this type with all the cells to execute a process of synthesis. Liberty
file contains for each logic cell, area, timing models, power models, timing checks
to be used for the particular path in the circuit. The look up table contains three
dimensional values of timing and internal power. In SoC design which uses library
with multiple voltages, there will be corresponding liberty files for each of the
voltage.

FHEFHAAFAE A A R A R R
FHEFHEEEEE

.1ib extract:

/* _________________________ *

* Design : ADDFHX2 *

cell (ADDFHX2) {

area : 8.208000;

cell leakage power : 0.327774;
rail connection( VDD, RAIL VDD );
rail connection( VSS, RAIL VSS );
pin(A) {

direction : input;

input signal level : RAIL VDD;
capacitance : 0.00289594;,

rise capacitance : 0.00288999;
fall capacitance : 0.00289594;

}

pin(B) {

# Data similar to pin(A)
}

pin(CI) |

# Data similar to pin(A)
}

pin(CO) |

direction : output;
output signal level : RAIL VDD;
capacitance : 0;

rise capacitance : 0;
fall capacitance : 0;

max capacitance : 0.262575;
function : “(((A B)+(B CI))+(CI A))”;
timing () {
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related pin : “A”;

timing sense : positive unate;
cell rise(delay template 3x3) {
index 1 (“0.008, 0.04, 0.087);
index 2 (“0.01, 0.06, 0.17);
values ( \

“0.205832, 0.395553, 0.539816”, \
“0.217523, 0.407235, 0.55108 ™, \
“0.232146, 0.421821, 0.565704 “);
}

rise transition(delay template 3x3)
index 1 (“0.008, 0.04, 0.087);
index 2 (“0.01, 0.06, 0.17);
values ( \

“0.114013, 0.463975, 0.756059”, \
“0.114164, 0.463936, 0.752876”, \
“0.114441, 0.463654, 0.7531747);
}

cell fall(delay template 3x3) {
index 1 (“0.008, 0.04, 0.087);
index 2 (“0.01, 0.06, 0.17);
values ( \

“0.199984, 0.415461, 0.580846”, \
“0.211593, 0.42712, 0.592588”, \
“0.225795, 0.441286, 0.606689”);
}

fall transition(delay template 3x3)
index 1 (“0.008, 0.04, 0.087);
index 2 (“0.01, 0.06, 0.17);
values ( \

“0.121746, 0.516895, 0.840346”, \
“0.120985, 0.516002, 0.840337”7, \
“0.121692, 0.516881, 0.841414”) ;
}

}

timing () {

related pin : “B”;

# Data similar to pin (A)
}

timing () {

related pin : “CI”;

# Data similar to pin (A)
}

internal power () {
related pin : “A”;

313
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rise power (energy template 3x3) {
index 1 (“0.008, 0.04, 0.087);
index 2 (“0.01, 0.06, 0.17);
values ( \
“0.002446, 0.002507, 0.002516”7, \
“0.002431, 0.002493, 0.0025027, \
“0.002424, 0.002486, 0.002495”) ;
}
fall power (energy template 3x3) {
index 1 (“0.008, 0.04, 0.087);
index 2 (“0.01, 0.06, 0.17);
values ( \
“0.002446, 0.002507, 0.002516”7, \
“0.002431, 0.002493, 0.0025027, \
“0.002424, 0.002486, 0.002495”) ;
}
internal power () {
related pin : “B”;
# Data similar to pin(A)
}
}
}
pin(S) {
direction : output;,
output signal level : RAIL VDD;
capacitance : 0;
rise capacitance : 0;
fall capacitance : 0;
max capacitance : 0.255238;
function : “((A"B)"CI)”;
timing () |
# Timing Data similar to Pin (CO) with respect to related pins
A, B, CI
}
Internal power () {
# Internal Power Data similar to Pin (CO) with respect to related
pins A, B, CI
}
}
}

Executable Scripts
HHHHEHHE R AR AR AR A
HEHHHHEHE

Synthesis Tcl script:

Synthesis is tool dependent and hence the command syntax, can be different for
different synthesis tools. Refer to Fig. 11.4 for the synthesis flow with different
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Fig. 11.4 Synthesis script
processes and indicative
commands
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target library
symbol library

Read & analyse Design
Read_file
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analyse

define operating environment
set_operating conditions
set_wireload_model

set_load

set_fanout

Set design rule constraint
set_max_transition
set_max_fanout
set_max_Capacitance
Create_clock
set_clock_latency
set_clock_uncertainty
set_input_delay
set_output_delay
set_max_area

Flat or hierarchial synthesis

Compile and Optimize

Check design
check_design
report_area
report_timing
report_constraint

Save design
write_design
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process segments and indicative commands for the synthesis. The designer has to
refer to the tool based commands for the processes given in the script segments and
replace them with the correct commands to execute in the tool environment. This
activity requires a synthesis tool licence to execute. Though the commands resem-
ble the syntax, one needs to refer to the actual commands from the user guide.

11.7.2 Logic Equivalence Check (LEC)

The following script is a sample script for a logic equivalence script. It uses the syn-
thesized netlist as the revised design and the RTL design as the golden reference.
The script uses cadence conformal tool-specific commands. This requires a tool
license to execute.

SHHEHEHEHH S SR SRR R R R
HHH

set log file lec phy 1801.log -replace

set lowpower option -power domain check

set lowpower option -native 1801 -golden analysis style post syn-
thesis -revised analysis style post route

set undefined cell black box -noascend -both

//Read Library for both Golden and Revised Designs

read library -liberty {standard cell library eg. librarypath/
1ib/*}-both

//Read synthesized netlist
read design -verilog -golden top.wv

//Read RTL model
read design -verilog -revised top.vg

substitute blackbox model -golden
report design data

report black box

set analyze option -auto
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set system mode lec

// report mapped points
report unmapped points -summary
report unmapped points -extra -unreachable -notmapped

//analyze setup -verbose -effort ultra
add compared points -all

// compare mapped points
compare

// report compare data

report compare data -class nonequivalent -class abort -class
notcompared

report statistics

//**************************************************************
Kk kAkKk Kk Kk Kk kKK

//* Generates the compare data reports
//**************************************************************

Kk kAkKk Kk Kk Kk kKK

tclmode

rm -rf reports

mkdir reports

vpxmode

report compare data -noneq > reports/noneq.rpt
report compare data -abort > reports/abort.rpt

Layout Extract File (LEF)
The extract of a LEF is given here. This is a dummy file to show the content of the
LEF. This contains the size and electrical parameters of the layer in VLSI. The para-
sitic extractor from the P&R tool uses this file to extract actual parasitics of the
interconnects in the SoC layout for timing and other electrical rule checks (ERCs)
during physical design verification.

Extract of the LEF for a particular technology library is shown below:

gz gaadasddidddddsssasadadddidsdsssassaddddasadssaaasadddaadddiad
#HAAARRREAAAF
LAYER Metall

TYPE ROUTING ;

DIRECTION HORIZONTAL ;

PITCH 0.19 0.19 ;
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WIDTH 0.06 ;

AREA 0.02 ;

SPACINGTABLE

PARALLELRUNLENGTH 0 0.32 0.75 1.5 2.5 3.5
WIDTH 0 0.06 0.06 0.06 0.06 0.06 0.06

WIDTH 0.1 0.06 0.1 0.1 0.1 0.1 0.1

WIDTH 0.75 0.06 0.1 0.25 0.25 0.25 0.25
WIDTH 1.5 0.06 0.1 25 0.45 0.45 0.45
WIDTH 2.5 0.06 0.1 25 0.45 0.75 0.75

MINIMUMCUT 1 WIDTH 07 WITHIN 0.3 FROMABOVE ;
MINIMUMCUT 2 WIDTH 4 WITHIN 0.3 FROMABOVE ;
MINIMUMCUT 4 WIDTH 1 WITHIN 0.3 FROMABOVE ;
MINIMUMCUT 2 WIDTH 1.5 FROMABOVE LENGTH 1.5 WITHIN 3 ;
MINENCLOSEDAREA 0.045 ;

DIAGSPACING 0.08 ;

DIAGMINEDGELENGTH 0.1 ;

RESISTANCE RPERSQ 0.0736 ;

CAPACITANCE CPERSQDIST 0.0002 ;

THICKNESS 0.15 ;

EDGECAPACITANCE 0.0002 ;

MINIMUMDENSITY 20 ;

MAXIMUMDENSITY 65 ;

DENSITYCHECKWINDOW 120 120 ;

DENSITYCHECKSTEP 60 ;

ANTENNAMODEL OXIDE1l ;

ANTENNAAREARATIO 475 ;

ANTENNACUMAREARATIO 5000 ;

ANTENNACUMDIFFAREARATIO PWL ( ( 0 5000 ) ( 0.099 5000 ) ( 0.1
48045 ) ( 1 48450 ) ) ;

DCCURRENTDENSITY AVERAGE 2 ;

PROPERTY LEF58 SPACING "SPACING 0.08 ENDOFLINE 0.09 WITHIN 0.025
MINLENGTH 0.06 PARALLELEDGE 0.08 WITHIN 0.1 ;" ;
END Metall

0.
0.
WIDTH 3.5 0.06 0.1 0.25 0.45 0.75 1.25 ;
0.
0.

LAYER Vial

TYPE CUT ;

SPACING 0.07 ;

SPACING 0.1 ADJACENTCUTS 3 WITHIN 0.11 ;

WIDTH 0.07 ;

ENCLOSURE BELOW 0.005 0.03 ;

ENCLOSURE ABOVE 0.005 0.03 ;

ANTENNAMODEL OXIDE1 ;

ANTENNAAREARATIO 25 ;

ANTENNADIFFAREARATIO PWL ( ( 0 20 ) (1 20 ) ) ;
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ANTENNACUMROUTINGPLUSCUT ;

ANTENNACUMAREARATIO 180 ;

DCCURRENTDENSITY AVERAGE 0.1 ;
END Vial

11.8 Part IIT

This part deals with two of the design cases of a block of SoC design for reference.
The first one is the mixed block interface (MBI) controller for analog design with
PLL and data converters, whose pin diagram is shown in Fig. 11.15.

The internal block diagram is shown in Fig. 11.6.

The second design case is the MINI-SoC for IOT applications and the formal
process with documentation for overview, application scenario and, design details
of MINI-SoC for IOT are detailed in the following section.

Overview and Application Scenario MINI-SoC can be used for a wide variety of
10T applications like body temperature monitoring device in healthcare, soil humid-
ity monitoring in agriculture, or vehicle tracking device in automobiles by interfac-
ing it to suitable sensor modules and input-output (I0) modules (Fig. 11.7).

MINI-SoC functional requirements
The following are the specifications and requirement for MINI-SoC design.
Intel 8051 processor core with:

mpa_mpd_clk =
mpd_i2c_clk30mhz
reset N —n ——— dac_rdy_sync
dac_rdy — —— adc_rdy sync

dac_en —»

adc_en —| Mixed block " mpd_dac_afifo_wren
adc_mpd_wr_data[63:0] | Interface | — 4 i2c_mem_wr_en
. MBI
i2c_dac_mode |
. - mem_i2c_rddata[15:0]
i2c_adc_mode #|
i2c_mem_address[9:0] - ——»-mem_i2c_cmd_vid

i2c_mem_rd_en »|
. ——i2c_mem_buffull_dsync
i2c_mem_wrdata[15:0] - = - -GSy

i2c_mem_depth[7:0] —»

Fig. 11.15 Mixed block interface (MBI )
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MBI Testbench

12C Slave

12c Master
Transactor

Cmd/status
RegBank

Mixed Block Interface (MBI)

11 Reference Designs

ADC IF

IClock/reset_G/R

mem_controller

AsynFifo

DAC IF

Memory
model

Fig. 11.6 Internal block diagram of MBI design and test bench

Temperature sensor LCD Display
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Power Supply
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GPS Module LCD Display
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Power Supply
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Fig. 11.7 MINI-SoC applications
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Fig. 11.8 MINI-SoC internal block diagram

Power-on reset and programmable brown-out Detection
Internal calibrated oscillator

External and internal interrupt sources

Six sleep modes: idle, ADC noise reduction, power-save, power-down, standby,
and extended standby

32K program memory

32K data memory

32 x 8 general-purpose scratchpad registers

Master/slave SPI serial interface

Byte-oriented 2-wire serial interface (Philips 12 C compatible)
. Programmable serial UART (Fig. 11.8)

bl e

SowNowL

[u—

MINI-SoC performance requirements: MINI-SoC should have the following
performance requirements:

1. Maximum clock speed of 20 MHz

2. In-System Programming by On-chip Boot Program

3. Powerful Instructions—Most Single Clock Cycle Execution
4. Up to 20 MIPS throughput at 20 MHz

I0s and packaging requirements: {Sample requirement applicable when the
design is taken for fabrication}

28-pin PDIP, 32-lead TQFP

Operating voltage: {Decides library choice when design is taken up for
fabrication}

1. 1.8-5.5V
2. Temperature range: -40°C to 85°C
3. Speed grade: -0-20 MHz @ 1.8-5.5V
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11.8.1 MINI-SoC Design

This section details the design or microarchitecture of the MINI-SoC design

10 Diagram

MINI-SoC input-output diagram is shown in Fig. 11.9.

MINI-SoC internal block diagram: Fig. 11.10 shows the internal block diagram
of MINI-SoC (Table 11.1).

User may register at the weblink www.opencores.org and download the MINI-
SoC design database from the link https://opencores.org/download/oms805 1 mini.
The SoC subsystem is designed by Mr. Dinesh Annayya, my colleague.

Clk ———»
reset_A——p
i2c/spi_eHe—rn
spi_data—r——p=[ MINI-SOC
i2c_data_otl———

i2c_datain—p

spi_data_owt———

—_— S

Fig. 11.9 MINI-SoC IO diagram
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sPl
12C
12C
UART

Fig. 11.10 MINI-SoC internal block diagram

Table 11.1 Top-level input-output signals of MINI-SoC

SI. Reset

no | Signal Width | Direction | Description value

System interface

1 clk 1 Input Clk is the main SoC clock -

2 reset_n 1 Input Reset is active low reset signal with which all | I’bl

the internal logic get reset

12¢ slave interface

3 12¢_data 1 Inout I12¢ data input-output in slave mode 1’b0

4 |12c_clk 1 Input 12c serial clock input to which i2c¢ data is 1’b0

synchronized in slave mode

5 | 2c/spi_clk |1 Input 12¢ or spi clock input in slave mode which is | 1’b0

input by external i2c master

6 12¢_sdata 1 Inout Multiplexed I2c serial data which is in slave | 1'b0

mode

7 12c_mdata 1 Inout Multiplexed I2c serial data which is in master | 1’b0

mode

8 | I2¢/spi_mclk |1 Output 12¢ or spi clock output in master mode which | 1’b0

is generally lower than system clock

EJTAG interface

9 TDI 1 Input TDI signal 1’b0

10 | TDO 1 Output TDO signal 1’60

11 |TCK 1 Input Serial JTAG clock

12 | TRST 1 Input Reset 1’b0

13 | TMS 1 Output Model select 1’b0




Index

A

Accellera Systems Initiative, 84

Advanced test sequence (ATS), 126

AHB-lite interface, 38

AMBA high-performance bus (AHB), 38

AMBA peripheral bus (APB), 43

Analog blocks, 52

Analog simulators, 160

Analog to digital converters (ADCs), 43

AND bridge fault (ABF), 125

AND-OR-INVERT (AOI), 62

Application programming interfaces
(APIs), 24, 164

Architectural synthesis, 87

ARM Cortex M4 block diagram, 38

ARMO610 microprocessor, 38

ARM SOC, 38, 46, 63

Assertions, 64

Asymmetric multiprocessing (AMP), 12

Asynchronous logic circuits, 68

Asynchronous reset, 61

At-speed testing, 133

Automatic test equipment (ATE), 122, 127,
131, 133

Automatic test pattern generator (ATPG),
116, 133

B

Back annotation, 85, 208

Backup servers, 23

Base class library (BSL), 164

Behavioral functional models (BFM), 143

© The Editor(s) (if applicable) and The Author(s), under exclusive license to

Springer Nature Switzerland AG 2022

Behavioral modelling, 71, 73

BGA, 219, 223

Bi-CMOS technology, 11

Bill of materials (BOM), 51

Boundary register chain, 118

Boundary scan (BS), 120, 122, 124, 126

Bridge coupling faults (BFs), 124

BS insertion flow, 120, 122, 124, 126

Buffer managers, 63

Bug-debug, 164, 165

Bug tracking, 164

Bug tracking workflow, 164

Built-in self-test (BIST), 46-48

Bus functional module (BEM), 140, 143, 144,
146, 163

C
Caltech Intermediate Format (CIF), 196
Cell-based delay calculation, 100
Ceramic package, 216
Chemical vapor deposition (CVD), 169
Chip fabrication process, 5, 196
Chip scale package (CSP), 219
Clock
buffer, 62
domain crossover, 60, 61, 96, 302-305
jitter, 66, 67
latency, 95
power consumption, 188
signal, 60, 62, 95, 96, 105, 131
skew, 65, 67, 96, 105
source, 68

325

V. S. Chakravarthi, A Practical Approach to VLSI System on Chip (SOC) Design,

https://doi.org/10.1007/978-3-031-18363-8


https://doi.org/10.1007/978-3-031-18363-8

326

Clock tree synthesis (CTS), 88, 178, 179,
187, 189

CMOS, 1-5, 10, 11

CMOS fabrication process, 197

CMOS FinFET technology, 136

Code coverage, 160

Coffee/tea vending machine, 200

Coloured ball puzzle box, 286-288

Combinational blocks, 235, 247, 250, 254,
257,259, 262

Combinational circuits, 59, 67

Combinational logic, 59

Combinational loop, 132

Commercial, 216, 222

Computational servers, 23

Computers generation, 7

Configuration register, 295-299

Constraints, 80, 82—-85, 87, 92, 105, 110

Coupling faults, 124, 125

Cross talk analysis, 206, 207

CTS, 211

Custom design, 19

Cycle-based simulators, 147, 152, 154

Cyclic redundant check (CRC), 14

D
Data converter IPs, 51
Dataflow modelling, 71, 75
Decoder, 257, 258
Design automation tools, 7, 51, 171
Design directory, 230
Design for testability (DFT), 28, 30, 57
description, 113
D-flip-flops, 113
logic insertion techniques DFT logic
insertion techniques
SOC design, 114, 116
test modes, 113
Design goals, 18, 19, 21, 31
Design infrastructure network topology, 22
Design rule check (DRC), 211
Design rule constraints (DRC), 86, 187, 211
Design rule violation (DRV), 188, 211, 213
Design strategy, 18, 19
Design tape-out, 214
Development life cycle, 17
Device under test, 152—154
DEFT logic insertion techniques
ATE testing, 133
ATPG pattern generation, 133
BS, 118, 120
LBIST, 128, 130
memory clustering, 132

Index

OSCG, 131
PATM, 127
scan compression, 131
scan insertion, 116, 117
simulations, 133
SOC challenges, 132
tools, 133
DFT mode, 131
DFT SDC, 131
Die size, 6
Digital signal processors (DSPs), 14, 38
Digital SOC core development flow
backend flow, 28
design corner, 26, 28
design document/microarchitecture
design, 26
DFT, 28
functional specification, 26
HDL, 27
library modules, 27
netlist, 28
routing, 28
standard design flow, 26, 27
Digital to analog converters (DACs), 51
Direct programming interface (DPI), 161
DP register files (DPRF), 63
DSP processor, 42
Dual port RAMs (DPRAM), 63
Dual-port SRAMs (DPSRAM), 47
DUT, 145, 146
Dynamic voltage and frequency scaling
(DVES), 88

E
EDA synthesis tool, 60
EDA tools, 3-5, 8,9, 18, 19, 21, 25
8:1 multiplexer, 247, 248
Electrical rule checks (ERCs), 205, 209, 317
Electromigration (EM), 203, 205, 209
Electronic change orders (ECOs), 179, 185,
191, 192, 202, 203
Electrostatic discharge (ESD), 205
Embedded memories
BIST controllers, 47
compiled memories, 47, 48
memory compiler, 48
register arrays, 46
SRAM cell structure, 46
types, 46, 47
Embedded processor subsystem
ARM 610 microcontroller, 38
configuration tools, 44
development boards, 45



Index

DSP, 38, 42,43
Ethernet frame transmission, 41
hw-sw co-design, 43
MIPS, 41, 42
requirements, 39
RISC processors, 39
SDRAM/DDR controllers, 63
selection process, 40
Embedded processors, 38, 39, 41, 42
Encoder, 254, 255
Encryption algorithm, 14
Equivalence checking, 166
Error correcting code (ECC), 15, 47
Ethernet frame format, 41, 42
Event-based simulators, 152, 154
Executable scripts, 314, 316-318

F

Fast-changing fabrication technology, 10

Field-programmable gate arrays (FPGAs), 3

File formats, 169, 170, 172, 173

Filers, 23

File transfer protocol (FTP), 214

FinFET technology, 193

Finite state machines (FSMs), 65

Firewalls, 24

First in first out (FIFO), 68

Flip-chip package, 219, 220

5-bit counter, 308

Floating point unit (FPU), 38

Floor plan, 173, 178, 180, 181, 183, 184,
191, 193

Formal verification methods, 199

4-bit up/down counter, 240, 241

4:2 encoder, 254

Frame check sequence (FCS), 41

FSM-based sequence detector, 265-267

Functional blocks, 69

Functional coverage, 139, 160

G
Gate level netlist verification, 93
Gate-level simulation, 204, 208
Gate-to-gate LEC, 201
GDS 11, 169, 171, 173, 196, 214
GDS 1I file format, 169
Globally synchronous and locally
asynchronous (GSLA), 67
Good automated manufacturing
practice (GAMP)
cloud, 57
device driver, 56

327

firmware, 56
hardware, 56
human ware, 55
middleware, 56
software, 56

H
Hard macro, 63, 72
Hardware accelerator, 69
Hardware description languages (HDLs), 5,
28, 60, 63,70, 72, 170
behavioral modelling, 71
dataflow modelling, 71
design flow, 71
and EDA tool algorithms, 70
input-output pad instantiation, 76
power ground corner pad instantiation, 77
requirement, 71
structural modelling, 71
Verilog, 73
VHDL, 73
Hardware vs. software, 71
Hardware-software co-design, 39, 56
High fanout nets (HFNs), 185, 186
High-level design document (HLD), 17-19
High-level programming language (HLL), 71
High-level synthesis, 87
Hour-minute-second timer, 271-273

I

IEEE802.3-based 10/100Mbps MII
protocol, 50

IEEE 1149.1/6, 118, 120, 127

Industry standard, 216

Instruction register (IR), 128

In-system programming (ISP), 43

Integrated clock gate (ICG), 213

Intel’s 22nm technology SRAM memory, 48

Intellectual property cores (IP cores), 8, 53

Interconnect parasitic estimation, 100

Interframe gap (IFG), 41

International Society for Pharmaceutical
Engineering (ISPE), 55

International Standards Organization (ISO), 53

International Technology Roadmap for
Semiconductors (ITRS), 4

Inversion coupling fault, 124

INVERT-OR-AND (I0A), 62

Ton implantation, 169

10 pad integration, 77

IP cores, 8

IR analysis, 209



328

IR map, 209, 211
Isolation cells, 90, 91

J

JTAG, 118-120, 127, 128, 133
JTAG BS architecture, 119
JTAG macro core, 118

K
Kripke structure, 200

L

Layer exchange format (LEF), 173

Layout, 169, 171, 173, 174, 178, 180, 190,
196, 202, 206, 207, 211

Layout extract file (LEF), 317, 318

Layout vs. schematic (LVS), 196, 207, 208

Level shifters, 90

Library files, 312-314

Linchpin technologies, 7

Line width tapering, 190

Linear feedback shift register (LFSR),
269, 270

Lint, 80

Linting, 80

Lint tools, 72

Logic BIST (LBIST), 128, 129

Logic equivalence check (LEC), 28, 201, 203,
229, 307, 316, 317

Low-power SOCs, 88, 90, 91

M
Macros, 21, 63, 80, 82
Market requirement document (MRD), 17, 21
Market research, 17
Mealy FSM, 65
Media access controller (MAC), 51
Mega cells, 21
MEM-based sensor technology, 11
Memories, 102
Memory built-in self-test (MBIST)
advantages, 122
algorithms, 126
architecture, 123
circuitry, 122
conventional DFT and ATPG
approaches, 122
definition, 121
memory faults
coupling faults, 124, 125

Index

neighborhood pattern-sensitive
faults, 126
stuck-at faults, 123
transition fault, 124
ROM test algorithm, 127
standard HDL simulators, 122
Memory clustering, 132
Memory compiler architecture, 48
Memory compilers, 15, 47, 49
Memory protection unit, 38
Memory technology, 11
MEMs, 11
Metastable state, 61, 62
MIL, 216
Million instructions per second
(MIPS), 30
MINI-SOC
applications, 319, 320
functional requirements, 319
input-output diagram, 322
input-output signals, 323
internal block diagram, 322
performance requirements, 321
Mixed signal blocks, 51
Model checking, 199
Modeling styles, 72
Moore FSM, 65
Moore’s law, 1, 6
More-than-Moore (MtM), 5
Multi-input signature generator (MISG), 128
Multiple input signature register (MISR),
127, 128
Multiple supply voltage (MSV), 88
Multi-VT cells, 90

N

Nanometer technology, 136

NCSim simulator, 230

Neighborhood pattern-sensitive faults, 126
Netlist, 79, 82, 84, 86-88, 91, 93, 109
Network-attached storage (NAS), 23
Network delay, 95

Network on chip (NOC), 69

Non-digital components, 4

Nonrecurring engineering (NRE), 18, 136

(6}

On-chip variation (OCV), 110

1:8 demultiplexer, 250-252

On-SOC clock generation (OSCG), 131
OP-AMP layout, 16

OR bridge fault (OBF), 125



Index

OSI model
application layer, 55
data link layer, 54
network layer, 54
physical layer, 53
presentation layer, 55
session layer, 54
transport layer, 54

P
Packaging, 215-228
assembly flow, 217
BGA, 223
bonding rules, 219
and bonding wires, 215
ceramic BGA, 223
classification, 216
components, 217
functions, 215
multi-chip in single, 224
parts, wire-bonded, 217
performance, 215, 222
QEN, 223
reliability tests, bond wire, 218
selection criteria, 216, 217
system integration, 222
technology
flip-chip, 219
Pentium Pro chip, 219
wafer chip-scale, 221
wire bonded, 219
voltage fluctuations, 215
Parallel scan test, 133
Passive/static fault, 126
Path groups, 106
Phase-locked loop (PLL), 60
Photolithography, 196
Photoresists, 196
Physical design, 5, 171, 172, 174, 180, 199,
201, 202, 206, 208, 211
Physical design tools, 88
Physical vapor deposition (PVD), 169
Place and route, 171, 173, 192
Placement and routing (PR), 28
Plastic package, 216
PLL block diagram, 52
Power aware test module (PATM), 127
Power domain scaling, 193
Power domain shutdown, 193
Power ground pad integration, 77
Power integrity (PI), 206
Power management, 10, 90
Preferred data path placement (PDP), 194

Printed circuit boards (PCBs), 4

Processor design flow, 29

Processor subsystems, 37, 38, 43, 46

Process, voltage, and temperature (PVT),
109, 110

Product requirement document (PRD), 17

329

Programmable memory BIST (PMBIST), 127

Protocol blocks, 49
Pseudorandom pattern generator
(PRPG), 128

QFN, 223

R

Radio frequency (RF), 37

Real-time operating system (RTOS), 14
Re-convergence, 170

Re-convergent model, 169

Register arrays, 51

Register-to-register (R2R), 108
Register transfer level (RTL), 60
Regression, 140, 146

Regression tests, 146

Residual timing violations, 188
Resource planning, 25

Revision control/version control server, 24
RF control blocks, 51

RISC processors, 38, 43

ROM test algorithm, 127

RTL design, 231

RTL-to-gate LEC, 201

RUNBIST function, 130

RUN script, 133

S

Scan compression, 131, 133

Scan insertion, 116, 117

Scanning electron microscope (SEM), 219

Scratchpad registers, 289-293

Scripting language, 162

Self-sync scrambler, 274-276

Self-test using MISR and parallel SRPG
(STUMP), 128

Sequential circuits, 59

Sequential logic equivalence check
(SLEC), 166

Sequential loop, 132

Shift register sequence generator (SRSG), 128

Side stream scrambler, 280-282
Signal integrity (SI), 206



330

Simulation, 137, 139, 146, 147, 150, 154, 160,

161, 163, 166

Simulation Program with Integrated circuit

Emphasis (SPICE), 52
Simultaneous switching noise (SSN), 205
SIMVISION tool, 231
Single port register files (SPRF), 63
Single-port SRAMs (SPSRAM), 47, 63
Slack, 103, 105, 107-109
16 x 16 multiplier, 235
SMP-AMP processor structures, 13
SOC constituents

embedded memories Embedded memories
embedded processor Embedded processor

subsystem

on-chip standard communication cores, 37

SOC design constraint (SDC), 83
SOC physical design
advanced technologies, 193, 194
constraints, 186
CTS, 187
definitions, 174
description, 171
ECO implementation, 192
electrical effects, 174
floor planning, 182
flow, 32
high performance, 194
layout, 178
low power, 192, 194
P&R tools, 174

photolithography and mask pattern, 196

placement, 184—186
routing, 174, 178, 190, 191
setup and floor plan, 180, 182
stick diagram, 174, 177, 178
theory, 173

SOC synthesis
analyze, 84
area report, 92, 94
behavioral synthesis, 87
CMOS technology processes, 4, 5
complexity, 87
design constraints, 85, 86
DFT activity, 88
elaborate design files, 83
gate level netlist verification, 93
HDL files, 83
HFENSs, 185, 186
hierarchical synthesis, 87
10 pads, 79
lint tools, 80
low-power, 88, 90, 91
optimization constraint, 84

read constraints, 83
read library, 82
setup environment, 82
standard cell library, 82
technology library, 79
timing report, 92
two level/multilevel optimization
techniques, 82
UPF, 91
write reports, 85
SOC under test, 143
Soft macro, 63
Space, 216
Speed matching, 67, 68
SRAM memory cell layout, 15

Index

Standard cell, 79, 80, 82-86, 88, 90, 92, 97,

107, 108
Standard cell library, 79, 84
Standard delay constraint (SDC), 83, 86,
88,96, 310
Standard delay format (SDF), 203
Standard design constraint (SDC), 82,
83, 86, 95
Start frame delimiter (SFD), 41
State machine, 231
State retention, 90
State retention power gating (SRPG), 90
Static timing analysis (STA), 29, 79-111,
202,204
clock period, 103
definition Timing definition
delay calculation, 99
design corners, 109, 110
dynamic timing analysis, 100
equivalent cells, 104
hold, 101
minimum pulse width high, 103
minimum pulse width low, 103
multimode timing constraint analysis,
negative setup positive hold, 101
organizing paths, 107-109
parameters, 100
positive setup negative hold, 101
positive setup positive hold, 101
PVT variations, 104
recovery, 102, 103
removal, 102
sequential elements, 102
setup, 100
skew, 101
SOC design, 79, 111
temperature multipliers, 104

110

timing and design constraints, 105-107

TLF file, 100



Index

Storage area network (SAN), 23
Structural modelling, 71, 76

Stuck-at faults, 123

Submicron technologies, 65
Symmetric multiprocessing (SMP), 13
Synchronous designs, 60, 132
Synchronous reset, 61

Synchronous SOC blocks, 67
Synchronous systems, 65, 66
Synthesis, 79, 82, 84, 85, 87, 88, 92, 94, 108
Synthesis script, 307, 315

System in package (SIP), 219, 222
System layers, 53, 55

System modeling, 199

System on chip (SOC), 1-3, 5-14, 16-22, 24,

26,31, 33
analog cores, 16
application processors, 13
backup servers, 23
chip manufacturers, 11
computational servers, 23
constituents, 11, 12
control processors, 13
core/multicore processors, 12
definition, 11
design and development, 8
design center infrastructure, 22
design flow
digital SOC core development
flow, 26-30
integration, 31, 33
processor subsystem core
design, 12, 13
SOC chip high-level design
methodology, 25
design planning, 18, 19
design requirements, 18
design strategy, 18
development plan, 21
domains, 1
EDA tool plan, 21
embedded memory core, 15
EVM design development flow, 31, 34
filers, 23
firewalls, 24
high speed, 6
interface cores, 16
interface functional blocks, 11
IP design decisions, 20
life cycle development, 17
low-power, 31
modules, EDA environment, 9
product integration flow, 33
software development flow, 31

source control server, 24
system modelling, 19
system module development feasibility
study, 19
target technology decision, 20
vector processors, 14
workstations, 23
System software, 45, 53, 54
System Verilog, 71, 144, 146, 161, 164

T
Target fabrication process, 18
Technology library, 79, 82, 86, 92, 97,

109, 111

Test bench, 140-143, 145-147, 155, 158,
161, 163

Test environment, 137, 139, 140, 142-144,
146, 163

Test program interface (TPI), 146
Test scripts, 162
Test vectors, 152
Thermo-sonic technique, 217
32-bit adder, 231, 233, 234
32-bit counter with overflow, 237, 238
3D stacked silicon wafer technologies, 2
Timers, 272
Timing definition

clock domain, 95

clock latency, 95

clock signal, 95

design objects, 95

false path, 98, 99

fanout on nets, 97

input delay, 96

interconnect model, 97

multicycle path, 98, 99

operating conditions, 97

output delay, 96

SOC functional mode, 99
Timing library format (TLF), 100
Timing violations, 98-100, 107, 108
Tool command language (TCL), 85, 310
Transition fault, 124
2-bit comparator, 262, 263
2 clients arbiter, 243-245
2:4 decoder, 257
2x2 matrix multiplication, 259, 260

U

Universal power format (UPF), 88, 89, 91

Universal Verification Methodology
(UVM), 164

331



332

A\
Verification

assertions, 145
automated test environment, 144
automation scripts, 162
bottom-up approach, 138
bug and debug, 164
checker, 146
clock/reset block, 146
configuration, 146
continuous monitors, 144
decade counter, 147
design stages, 135
design transformations, 136
development boards, 167
development cycle, 136
first time requirement/success, 135
formal, 165
FPGA validation, 167
functional, 135, 140, 141, 152
innumerable use case scenarios, 136
input stimulus, 143
languages, 161
mailboxes, 146
methods

black-box, 141

gray-box, 142

white-box, 142
output BFM and checkers, 144
output reader and waveform dumping, 152
peripheral modules, 143
plan, 137, 139-141
platform-level, 138
reuse and IPs, 163
RTL test environment/bench, 143
self-synchronizing scrambler and

descrambler, 147

SOC design, 135
SOC DUT, 145
stimulus generator, 146
submodules, 143
system interface-based transaction-

level, 138
tools
coverages, 152
lint, 161

simulators, 152

Index

top-down approach, 137
TPI, 146
transactor, 146
Verification intellectual property (VIP), 20,
152, 163
Verification tools, 140, 152, 154, 160,
161, 164
Verilog HDL, 230
Very large-scale integration (VLSI), 1-5,
7,9, 10
classification, 2
CMOS technology, 1
complexity, 2
design methodology, 7
die size, 6
EDA environment, 9
VHDL, 71, 72
VLSI logic design
assertions, 64
asynchronous and synchronous
resets, 61
asynchronous circuits, 67
buffers, 63
clock domain crossovers, 60, 61
combinational and synchronous
logic, 59-60
FSMs, 65
hard and soft macros, 63
hardware accelerator, 69, 70
low-power techniques, 65-66
metastability, 61, 62
speed matching, 67
standard cells and compiled logic
blocks, 62
synchronous sequential circuits,
65, 66
Voltage scaling, 193

w

Wafer scale packages (WSP), 219
Waveform database (WDB), 133
Waveform generation logic (WGL), 133
Wire bonding, 217, 219

Wire-load model, 97, 106

Workstations, 23

Worst possible negative slack (WNS), 105



	Foreword to the First Edition by Faraj Aalaei
	Foreword to the First Edition by Ashok Soota
	Foreword to the First Edition by Walden C. Rhines
	Preface to the Second Edition
	Praise for the First Edition
	Preface to the First Edition
	About the Book
	Why read this book?
	What Problems Does It Solve?
	Who is the audience?
	What are the prerequisites to reading this book?
	Why become a VLSI designer?
	Contents
	Abbreviations
	Chapter 1: Introduction
	1.1 Introduction to CMOS VLSI
	1.2 Application Areas of SoC
	1.3 Trends in VLSI
	1.4 System on Chip Complexity
	1.5 Integration Trend from Circuit to System on Chip
	1.6 Speed of Operation
	1.7 Die Size
	1.8 Design Methodology
	1.9 SoC Design and Development
	1.10 Skill Set Required
	1.11 EDA Environment
	1.12 Challenges in All
	Reference

	Chapter 2: System on Chip (SoC) Design
	2.1 Part 1
	2.1.1 System on Chip (SoC)

	2.2 Constituents of SoC
	2.2.1 Processor Subsystem Cores

	2.3 Application-Specific Processors
	2.4 Control Processors
	2.5 Digital Signal Processors
	2.6 Vector Processors
	2.6.1 Embedded Memory Core
	2.6.2 Analog Cores
	2.6.3 Interface Cores
	2.6.4 On-Chip Clock Generators, PLLs, and Sensors

	2.7 Part 2
	2.7.1 SoC Development Life Cycle

	2.8 SoC Design Requirements
	2.9 Design Strategy
	2.10 SoC Design Planning
	2.11 System Modeling
	2.12 System Module Development Feasibility Study
	2.13 IP Design Decisions
	2.14 Verification IPs
	2.15 Target Technology Decision
	2.16 Development Plan
	2.17 EDA Tool Plan
	2.18 Design Center Infrastructure
	2.19 Computational Servers
	2.20 Filers
	2.21 Workstations
	2.22 Backup Servers
	2.23 Source Control Server
	2.24 Firewalls
	2.25 Resource Planning
	2.26 SoC Design Flow
	2.26.1 SoC Chip High-Level Design Methodology
	2.26.2 Digital SoC Core Development Flow
	2.26.3 Processor Subsystem Core Design
	2.26.4 SoC Integrated Design Flow

	2.27 EVM Design Development Flow
	2.28 Software Development Flow
	2.29 Product Integration Flow

	Chapter 3: SoC Constituents
	3.1 SoC Constituents
	3.1.1 Embedded Processor Subsystem for System on Chip
	Choice of Embedded Processors for SoC
	Embedded General-Purpose RISC Processors

	3.1.2 DSP Processors

	3.2 Issues of Hw-Sw Co-Design
	3.2.1 Processor Subsystems
	3.2.2 Processor Configuration Tools
	3.2.3 Processor Development Boards

	3.3 Embedded Memories
	3.3.1 Types of Memories
	3.3.2 Choice of Memories
	3.3.3 Memory Compiler and Compiled Memories

	3.4 Protocol Blocks
	3.5 Mixed Signal Blocks
	3.6 Radio Frequency (RF) Control Blocks
	3.7 Analog Blocks
	3.8 Third-Party IP Cores
	3.9 System Software
	3.9.1 OSI System Model
	Physical Layer (Layer 1)
	Data Link Layer (Layer 2)
	Network Layer (Layer 3)
	Transport Layer (Layer 4)
	Session Layer (Layer 5)
	Presentation Layer (Layer 6)
	Application Layer (Layer 7)


	3.10 GAMP Classification of Software
	3.10.1 Hardware
	3.10.2 Device Driver
	3.10.3 Firmware
	3.10.4 Middleware
	3.10.5 Software
	3.10.6 Cloud

	3.11 Design-Specific Blocks

	Chapter 4: VLSI Logic Design and HDL
	4.1 SoC Design Concepts
	4.1.1 Logic Design Fundamentals
	4.1.2 System Clock and Clock Domains
	4.1.3 Asynchronous and Synchronous Resets
	Metastability
	Standard Cells and Compiled Logic Blocks
	Hard and Soft Macros
	Data Buffers and Buffer Managers
	Design Assertions

	4.1.4 Synchronous Sequential Functional Blocks

	4.2 Asynchronous Circuits
	4.3 Speed Matching
	4.4 Network on Chip Architecture
	4.5 Hardware Accelerator
	4.6 Hardware Description Languages (HDL)
	4.7 Behavioral Modelling of the Hardware System
	4.8 Dataflow Modeling of the Hardware System
	4.9 Structural Modeling of the Hardware System
	4.10 Input-Output Pad Instantiation
	4.10.1 Power Ground Corner Pad Instantiation (Fig. 4.17)


	Chapter 5: Synthesis and Static Timing Analysis (STA)
	5.1 Part 1: SoC Synthesis
	5.1.1 Set Synthesis Environment
	Read Library
	Read HDL Design Files
	Elaborate the Design Files
	Read Design Constraints
	Optimization Constraint
	Synthesis
	Analyze
	Generate Reports

	5.1.2 SoC Design Constraints

	5.2 Design Rule Constraints
	5.3 SoC Design Synthesis
	5.4 Low-Power Synthesis
	5.4.1 Introduction to Low-Power SoCs
	5.4.2 Universal Power Format (UPF)

	5.5 Reports
	5.5.1 Gate Level Netlist Verification

	5.6 Part 2: Static Timing Analysis (STA)
	5.7 Timing Definition
	5.8 Timing Delay Calculation Concepts
	5.9 Timing Analysis
	5.10 Modeling Process, Voltage, and Temperature Variations
	5.10.1 Equivalent Cells

	5.11 Timing and Design Constraints
	5.12 Organizing Paths to Groups
	5.13 Design Corners
	5.14 Challenges of STA During SoC Design

	Chapter 6: SoC Design for Testability (DFT)
	6.1 Need for Testability
	6.2 Guidelines for SoC Design for Testability
	6.3 DFT Logic Insertion Techniques
	6.3.1 Scan Insertion
	6.3.2 Boundary Scan

	6.4 Boundary Scan Insertion Flow
	6.4.1 Memory Built-in Self-Test (MBIST)
	6.4.2 Stuck-at Faults
	6.4.3 Transition Faults
	6.4.4 Coupling Faults
	6.4.5 Neighborhood Pattern-Sensitive Faults
	6.4.6 MBIST Algorithms

	6.5 ROM Test Algorithm
	6.6 Power Aware Test Module (PATM) Insertion
	6.6.1 Logic BIST Insertion
	6.6.2 Writing out DFT SDC
	6.6.3 Compression Insertion

	6.7 On-SoC Clock Generation (OSCG) Insertion
	6.8 Challenges in SoC DFT
	6.9 Memory Clustering
	6.10 DFT Simulations
	6.11 ATPG Pattern Generation
	6.12 Automatic Test Equipment Testing (ATE Testing)

	Chapter 7: SoC Design Verification
	7.1 Importance of Verification
	7.2 Verification Plan and Strategies
	7.3 Verification Plan
	7.4 Functional Verification
	7.5 Verification Methods
	7.5.1 Black Box Verification
	7.5.2 White Box Verification
	7.5.3 Gray Box Verification

	7.6 Design for Verification
	7.7 Verification Example
	7.8 Verification Tools
	7.9 Verification Language
	7.10 Automation Scripts
	7.11 Design for Verification
	7.12 Assertions in Verification
	7.13 Verification Reuse and Verification IPs
	7.14 Universal Verification Methodology (UVM)
	7.15 Bug and Debug
	7.16 Bug Tracking Workflow
	7.17 Formal Verification
	7.18 FPGA Validation
	7.19 Validation on Development Boards

	Chapter 8: SoC Physical Design
	8.1 Re-convergent Model of VLSI SoC Design
	8.2 File Formats
	8.3 SoC Physical Design
	8.4 Physical Design Theory
	8.5 Stick Diagrams
	8.6 Physical Design Setup and Floor Plan
	8.7 Floor Planning
	8.8 SoC Power Plan
	8.9 Two-Step Synthesis of SoC Design
	8.10 Placement
	8.11 Physical Design Constraints
	8.12 Clock Tree Synthesis (CTS)
	8.13 Routing
	8.14 ECO Implementation
	8.15 Advanced Physical Design of SOCs
	8.15.1 For Low-Power Consumption
	8.15.2 For Advanced Technology
	8.15.3 High Performance

	8.16 Photolithography and Mask Pattern

	Chapter 9: SoC Physical Design Verification
	9.1 SoC Design Verification by Formal Verification
	9.2 Model Checking
	9.3 Logic Equivalence Check (LEC)
	9.4 Static Timing Analysis (STA)
	9.5 ECO Checks
	9.6 Electromigration (EM)
	9.7 Simultaneous Switching Noise (SSN)
	9.8 Electrostatic Discharge (ESD) Protection
	9.9 IR and Cross Talk Analysis
	9.10 Layout Verse Schematic (LVS)
	9.11 Gate Level Simulation
	9.12 Electrical Rule Check (ERC)
	9.13 DRC Rule Check
	9.14 Design Rule Violation (DRV) Checks
	9.15 Design Tape Out

	Chapter 10: SoC Packaging
	10.1 Introduction to VLSI SoC Packaging
	10.2 Classification of Packages
	10.3 Criteria for Selection of Packages
	10.4 Package Components
	10.5 Package Assembly Flow
	10.6 Packaging Technology
	10.7 Flip-Chip Packages
	10.8 Typical Packages
	10.9 Package Performance
	10.10 System Integration
	10.11 Packaging Trends
	10.11.1 Stacked Die Integration
	10.11.2 3D Integration Schemes


	Chapter 11: Reference Designs
	11.1 Design for Trial
	11.2 Prerequisites
	11.3 User Guidelines
	11.4 Design Directory
	11.5 Part 1
	11.6 Design Examples
	11.7 Part II
	11.7.1 Design Flow
	11.7.2 Logic Equivalence Check (LEC)

	11.8 Part III
	11.8.1 MINI-SoC Design
	IO Diagram



	Index

